Journal of Materials Science

, Volume 47, Issue 19, pp 6939–6947 | Cite as

Supersaturated α-iron in vapour-deposited Fe–C thin films

  • A. Weck
  • C. W. Sinclair
  • C. P. Scott
  • C. Maunder


While the conventional Fe–C phase diagram predicts negligible solubility of carbon in α-Fe at room temperature, there are many examples where substantial carbon supersaturations have been reported. Non-equilibrium processing routes, such as physical vapour deposition (PVD), appear to be particularly well suited to generating very high levels of supersaturation. Few descriptions of the stability and microstructure of the supersaturated state exist, however. In this study, experiments have been performed using two PVD techniques allowing for the production of nanocrystalline films containing between 11 and 16 at% C. Transmission electron microscopy and electron energy loss spectroscopy reveal no phase other than a nearly body-centred cubic iron in the as-deposited films. This result is discussed with respect to the kinetics of carbon rearrangement and the possibility of the stabilization of the supersaturated state via defects.


Cementite Physical Vapour Deposition Electron Energy Loss Spectroscopy Supersaturated State High Carbon Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge fruitful discussions with X. Sauvage, M. Perez and J. D. Embury. This study was funded by ArcelorMittal and the Canadian Natural Sciences and Engineering Research Council.


  1. 1.
    Hansen M, Elliott RP (1958) Constitution of binary alloys, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Gridnev V, Gavrilyuk V (1982) Phys Met 4(3):531Google Scholar
  3. 3.
    Ivanisenko Y, Baumann G, Fecht G, Knote K, Saarov N, Korznikov A, Valiyev R (1997) Fiz Metallov I Metalloved 83(3):104Google Scholar
  4. 4.
    Takahashi J, Kawakami K, Ueda M (2010) Acta Mater 58(10):3602CrossRefGoogle Scholar
  5. 5.
    Li YJ, Choi P, Borchers C, Westerkamp S, Goto S, Raabe D, Kirchheim R (2011) Acta Mater 59(10):3965CrossRefGoogle Scholar
  6. 6.
    Ivanisenko Y, MacLaren I, Sauvage X, Valiev RZ, Fecht HJ (2006) High Press Technol Nanomater 114:133Google Scholar
  7. 7.
    Dahlgren S, Merz M (1971) Metall Trans 2(7):1753Google Scholar
  8. 8.
    Bauergrosse E, Lecaer G (1986) J Phys F 16(4):399CrossRefGoogle Scholar
  9. 9.
    Lecaer G, Bauergrosse E (1989) Hyperfine Interact 47(8(1–4):55Google Scholar
  10. 10.
    Bauergrosse E, Morniroli J, Lecaer G, Frantz C (1981) Acta Metall 29(12):1983CrossRefGoogle Scholar
  11. 11.
    Boswell P, Chadwick G (1976) J Mater Sci 11(12):2287. doi: 10.1007/BF00752093 CrossRefGoogle Scholar
  12. 12.
    Zhang H, Ohsaki S, Mitao S, Ohnuma A, Hono K (2006) Mater Sci Eng A 421(1–2):191Google Scholar
  13. 13.
    Lojkowski W, Djahanbakhsh M, Burkle G, Gierlotka S, Zielinski W, Fecht H (2001) Mater Sci Eng A 303(1–2):197Google Scholar
  14. 14.
    Languillaume J, Kapelski G, Baudelet B (1997) Acta Mater 45(3):1201CrossRefGoogle Scholar
  15. 15.
    Scott C, Guelton N (2006) Rev De Metall-Cah Inform Tech 103(10):458Google Scholar
  16. 16.
    Pringle O, Long G, Li J, James W, Grandjean F, Hadjipanayis G (1992) IEEE Trans Magn 28(5):2862CrossRefGoogle Scholar
  17. 17.
    Kazama N, Heiman N, White R (1978) J Appl Phys 49(3):1706CrossRefGoogle Scholar
  18. 18.
    Aouni A, Bauer-Grosse E (2002) J Alloy Compd 335(1–2):157CrossRefGoogle Scholar
  19. 19.
    Jouanny I, Billard A, Loi T, Demange V, Bauer-Grosse E (2005) Surf Coat Technol 200(5–6):1690CrossRefGoogle Scholar
  20. 20.
    Jouanny I, Demange V, Ghanbaja J, Bauer-Grosse E (2010) J Mater Res 25(9):1859CrossRefGoogle Scholar
  21. 21.
    Bauer-Grosse E (2004) Thin Solid Films 447:311CrossRefGoogle Scholar
  22. 22.
    Bauer-Grosse E, Aouni A (2007) J Non-Cryst Solids 353(32–40):3644CrossRefGoogle Scholar
  23. 23.
    Cao Y, Ernst F, Michal G (2003) Acta Mater 51(14):4171CrossRefGoogle Scholar
  24. 24.
    Scott CP, Sinclair CW, Weck A (2011) Scr Mater 65:763CrossRefGoogle Scholar
  25. 25.
    Johnson PC (1991) In: Vossen JL, Kern W (eds) Thin film processes II, chap. 5. Academic Press, Boston, pp 209–275Google Scholar
  26. 26.
    Ohring M (1992) The materials science of thin films. Academic Press, BostonGoogle Scholar
  27. 27.
    RR Parsons (1991) In: Vossen JL, Kern W (eds) Thin film processes II, chap. 4. Academic Press, Boston, pp 177–208Google Scholar
  28. 28.
    Scott CP, Drillet J (2007) Scr Mater 56(6):489CrossRefGoogle Scholar
  29. 29.
    Pouchou J, Pichoir F (1990) Scanning 12(4):212CrossRefGoogle Scholar
  30. 30.
    Petrov I, Barna P, Hultman L, Greene J (2003) J Vac Sci Technol A 21(5):S117CrossRefGoogle Scholar
  31. 31.
    Mi W, Li Z, Wu P, Jiang E, Bai H, Hou D, Li X (2005) J Appl Phys 97(4):043903CrossRefGoogle Scholar
  32. 32.
    He K, Brown A, Brydson R, Edmonds DV (2006) J Mater Sci 41(16):5235. doi: 10.1007/s10853-006-0588-4 CrossRefGoogle Scholar
  33. 33.
    Hamon A, Verbeeck J, Schryvers D, Benedikt J, Vander Sanden R (2004) J Mater Chem 14(13):2030CrossRefGoogle Scholar
  34. 34.
    Sinclair CW, Perez M, Veiga RGA, Weck A (2010) Phys Rev B 81(22):224204CrossRefGoogle Scholar
  35. 35.
    Udyansky A, von Pezold J, Bugaev VN, Friak M, Neugebauer J (2009) Phys Rev B 79(22):224112CrossRefGoogle Scholar
  36. 36.
    Liu X, Zhong F, Zhang J, Zang M, Kang M, Guo Z (1995) Phys Rev B 52(14):9970CrossRefGoogle Scholar
  37. 37.
    Clouet E, Garruchet S, Nguyen H, Perez M, Becquart CS (2008) Acta Mater 56(14):3450CrossRefGoogle Scholar
  38. 38.
    Chakravarty S, Jiang M, Tietze U, Lott D, Geue T, Stahn J, Schmidt H (2011) Acta Mater 59(14):5568CrossRefGoogle Scholar
  39. 39.
    Domain C, Becquart C, Foct J (2004) Phys Rev B 69(14):144112CrossRefGoogle Scholar
  40. 40.
    Mclellan R, Wasz M (1993) J Phys Chem Solids 54(5):583CrossRefGoogle Scholar
  41. 41.
    Zener CM (1948) Elasticity and anelasticity of metals. University of Chicago Press, ChicagoGoogle Scholar
  42. 42.
    Hillert M (1959) Acta Metall 7(10):653CrossRefGoogle Scholar
  43. 43.
    Sauvage X, Quelennec X, Malandain J, Pareige P (2006) Scr Mater 54(6):1099CrossRefGoogle Scholar
  44. 44.
    Sauvage X, Lefebvre W, Genevois C, Ohsaki S, Hono K (2009) Scr Mater 60(12):1056CrossRefGoogle Scholar
  45. 45.
    Hong M, Hono K, Reynolds W, Tarui T (1999) Metall Mater Trans A 30(3):717CrossRefGoogle Scholar
  46. 46.
    Taylor K, Chang L, Olson G, Smith G, Cohen M, Vandersande J (1989) Metall Trans A 20(12):2717CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. Weck
    • 1
  • C. W. Sinclair
    • 2
  • C. P. Scott
    • 3
  • C. Maunder
    • 4
  1. 1.Department of Mechanical EngineeringUniversity of OttawaOttawaCanada
  2. 2.Department of Materials EngineeringThe University of British ColumbiaVancouverCanada
  3. 3.Arcelormittal Maizières Research SAMaizières les MetzFrance
  4. 4.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations