Journal of Materials Science

, Volume 47, Issue 21, pp 7703–7715 | Cite as

MQSPR modeling in materials informatics: a way to shorten design cycles?

  • N. Sukumar
  • Michael Krein
  • Qiong Luo
  • Curt Breneman
First Principles Computations


We demonstrate applications of quantitative structure–property relationship (QSPR) modeling to supplement first-principles computations in materials design. We have here focused on the design of polymers with specific electronic properties. We first show that common materials properties such as the glass transition temperature (Tg) can be effectively modeled by QSPR to generate highly predictive models that relate polymer repeat unit structure to Tg. Next, QSPR modeling is shown to supplement and guide first-principles density functional theory (DFT) computations in the design of polymers with specific dielectric properties, thereby leveraging the power of first-principles computations by providing high-throughput capability. Our approach consists of multiple rounds of validated MQSPR modeling and DFT computations to optimize the polymer skeleton as well as functional group substitutions thereof. Rigorous model validation protocols insure that the statistical models are able to make valid predictions on molecules outside the training set. Future work with inverse QSPRs has the potential to further reduce the time to optimize materials properties.

Supplementary material

10853_2012_6639_MOESM1_ESM.doc (334 kb)
Supplementary material 1 (DOC 335 kb)


  1. 1.
    Hammett LP (1937) J Am Chem Soc 59(1):96CrossRefGoogle Scholar
  2. 2.
    Hansch C, Muir RM, Fujita T, Maloney PP, Geiger F, Streich M (1963) J Am Chem Soc 85:2817CrossRefGoogle Scholar
  3. 3.
    Hansch C, Fujita T (eds) (1995) Classical and three-dimensional QSAR in agrochemistry. American Chemical Society symposium series. American Chemical Society, WashingtonGoogle Scholar
  4. 4.
    Taft RW (1952) J Am Chem Soc 74:3120CrossRefGoogle Scholar
  5. 5.
    Tropsha A (2010) Mol Inf 29(6–7):476. doi:10.1002/minf.201000061 CrossRefGoogle Scholar
  6. 6.
    Breneman CM (2008) In: American Chemical Society national meeting, New OrleansGoogle Scholar
  7. 7.
    Nikolova N, Jaworska J (2003) QSAR Comb Sci 22:1006CrossRefGoogle Scholar
  8. 8.
    Jaworska J, Nikolova-Jeliazkova N, Aldenberg T (2005) Altern Lab Anim 33(5):445Google Scholar
  9. 9.
    Vrentas JS, Duda JL (1976) Macromolecules 9(5):785CrossRefGoogle Scholar
  10. 10.
    Vrentas JS, Duda JL (1977) J Polym Sci 15:403Google Scholar
  11. 11.
    Bicerano J (1992) Computational modeling of polymers. Plastics engineering series, vol 25. Marcel Dekker, New YorkGoogle Scholar
  12. 12.
    Bicerano J (1996) Prediction of polymer properties. Marcel Dekker, New YorkGoogle Scholar
  13. 13.
    Breneman CM, Thompson T (1993) In: Smith D (ed) Modeling the hydrogen bond. ACS symposium series. American Chemical Society, Washington, pp 152–174Google Scholar
  14. 14.
    Breneman CM, Thompson TR, Rhem M, Dung M (1995) Comput Chem 19(3):161CrossRefGoogle Scholar
  15. 15.
    Whitehead CE, Breneman CM, Sukumar N, Ryan MD (2003) J Comput Chem 24:512CrossRefGoogle Scholar
  16. 16.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford Press, OxfordGoogle Scholar
  17. 17.
    Nantasenamat C, Naenna T, Ayudhya CIN, Prachasittikul V (2005) J Comput-Aided Mol Des 19:509CrossRefGoogle Scholar
  18. 18.
    Sukumar N, Breneman CM (2007) In: Matta CF, Boyd RJ (eds) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim, pp 471–498Google Scholar
  19. 19.
    Murray JS, Politzer P, Famini GR (1998) J Mol Struct 454(2–3):299Google Scholar
  20. 20.
    Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68(8):1440CrossRefGoogle Scholar
  21. 21.
    Politzer P, Murray JS, Grice ME, Brinck T, Ranganathan S (1991) J Chem Phys 95(9):6699CrossRefGoogle Scholar
  22. 22.
    Murray JS, Abu-Awwad F, Politzer P (2000) J Mol Struct 501–502:241Google Scholar
  23. 23.
    Politzer P, Daiker K (1981) In: Deb BM (ed) The force concept in chemistry. Van Nostrand Reinhold, New YorkGoogle Scholar
  24. 24.
    Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potential. Plenum Press, New YorkGoogle Scholar
  25. 25.
    Topliss JG, Edwards RP (1979) J Med Chem 22:1238CrossRefGoogle Scholar
  26. 26.
    Rücker C, Rücker G, Meringer M (2007) J Chem Inf Model 47(6):2345. doi:10.1021/ci700157b CrossRefGoogle Scholar
  27. 27.
    Clark R, Fox P (2004) J Comput-Aided Mol Des 18(7):563. doi:10.1007/s10822-004-4077-z CrossRefGoogle Scholar
  28. 28.
    Breneman CM, Sukumar N, Embrechts MJ, Bennett KP, Sundling CM, Krein M, Hepburn T (2007) In: 234th national meeting American Chemical Society, BostonGoogle Scholar
  29. 29.
    Labute P (2008) Molecular Operating Environment. Chemical Computing Group, Inc., MontrealGoogle Scholar
  30. 30.
    Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith T, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Inc., WallingfordGoogle Scholar
  31. 31.
    Tropsha A, Gramatica P, Gombar VK (2003) QSAR Comb Sci 22(1):69. doi:10.1002/qsar.200390007 CrossRefGoogle Scholar
  32. 32.
    Gramatica P (2007) QSAR Comb Sci 26(5):694. doi:10.1002/qsar.200610151 CrossRefGoogle Scholar
  33. 33.
    Golbraikh A, Tropsha A (2002) J Mol Graph Model 20(4):269CrossRefGoogle Scholar
  34. 34.
    Embrechts M, Bress R, Kewley R (2006) In: Guyon I, Nikravesh M, Gunn S, Zadeh L (eds) Studies in fuzziness and soft computing, vol 207. Springer, Berlin, pp 447–462. doi:10.1007/978-3-540-35488-8_22
  35. 35.
    Lide DR (1994) CRC handbook of chemistry and physics, 75th edn. CRC Press, Boca RatonGoogle Scholar
  36. 36.
    Zupan A, Burke K, Ernzerhof M, Perdew JP (1997) J Chem Phys 106(24):10184CrossRefGoogle Scholar
  37. 37.
    Perdew JP, Ernzerhof M, Zupan A, Burke K (1998) J Chem Phys 108(4):1522CrossRefGoogle Scholar
  38. 38.
    De Julian-Ortiz JV (2001) Comb Chem High Throughput Screen 4(3):295Google Scholar
  39. 39.
    Visco DP, Pophale RS, Rintoul MD, Faulon J-L (2002) J Mol Graph Model 20(6):429CrossRefGoogle Scholar
  40. 40.
    Adams N (2009) In: Meier MAR, Webster DC (eds) Advances in polymer science, vol 225. Springer, Berlin, pp 107–149. doi:10.1007/12_2009_18 Google Scholar
  41. 41.
    Greenwald BC, Stiglitz JE (1986) Q J Econ 101(2):229. doi:10.2307/1891114 CrossRefGoogle Scholar
  42. 42.
    Golbraikh A, Tropsha A (2002) J Comput-Aided Mol Des 16(5):357. doi:10.1023/a:1020869118689 CrossRefGoogle Scholar
  43. 43.
    Baroni M, Clementi S, Cruciani G, Kettaneh-Wold N, Wold S (1993) Quant Struct-Act Relat 12(3):225. doi:10.1002/qsar.19930120302 CrossRefGoogle Scholar
  44. 44.
    Brandmaier S, Sahlin U, Tetko IV, Öberg T (2012) J Chem Inf Model 52(4):975. doi:10.1021/ci3000198 CrossRefGoogle Scholar
  45. 45.
    Weaver S, Gleeson MP (2008) J Mol Graph Model 26(8):1315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • N. Sukumar
    • 1
    • 2
  • Michael Krein
    • 2
  • Qiong Luo
    • 2
  • Curt Breneman
    • 2
  1. 1.Department of ChemistryShiv Nadar UniversityDadriIndia
  2. 2.Rensselaer Exploratory Center for Cheminformatics Research and Department of Chemistry and Chemical BiologyRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations