Journal of Materials Science

, Volume 47, Issue 18, pp 6724–6732 | Cite as

Arabinoxylan/nanofibrillated cellulose composite films

  • Jasna S. Stevanic
  • Elina Mabasa Bergström
  • Paul Gatenholm
  • Lars Berglund
  • Lennart Salmén
Article

Abstract

There is an increasing interest in substituting petroleum based polymer films, for food packaging applications, with films based on renewable resources. In many of these applications, low oxygen permeability and low moisture uptake of films are required, as well as high enough strength and flexibility. For this purpose, rye arabinoxylan films reinforced with nanofibrillated cellulose was prepared and evaluated. A thorough mixing of the components resulted in uniform films. Mechanical, thermal, structural, moisture sorption and oxygen barrier characteristics of such films are reported here. Reinforcement of arabinoxylan with nanofibrillated cellulose affected the properties of the films positively. A decrease in moisture sorption of the films, as well as an increase in stiffness, strength and flexibility of the films were shown. From these results and dynamic FTIR spectra, a strong coupling between reinforcing cellulose and arabinoxylan matrix was concluded. Oxygen barrier properties were equal or better as compared to the neat rye arabinoxylan film. In general, the high nanofibrillated cellulose containing composite film, i.e. 75 % NFC, showed the best properties.

Notes

Acknowledgements

The Knut and Alice Wallenberg Foundation are gratefully acknowledged for funding through the Wallenberg Wood Science Center. The authors thank Dr Aihua Pei for assistance in procuring the NFC and for fruitful discussions on the film casting techniques, Anders Mårtensson for providing the SEM micrographs and AFM measurements, Anne-Mari Olsson for performing the DVS and Therese Johansson for performing O2 permeability measurements.

References

  1. 1.
    Nisperos-Carriedo MO (1994) In: Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds) Edible coatings and films to improve food quality. Technomic Publishing Company, Lancaster, p 305Google Scholar
  2. 2.
    Gröndahl M, Eriksson L, Gatenholm P (2004) Biomacromolecules 5:1528CrossRefGoogle Scholar
  3. 3.
    Höije A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P (2008) Biomacromolecules 9:2042CrossRefGoogle Scholar
  4. 4.
    Mikkonen SK, Heikkinen S, Soovre A, Peura M, Serimaa R, Talja AR, Helén H, Hyvönen L, Tenkanen M (2009) J Appl Polym Sci 114:457CrossRefGoogle Scholar
  5. 5.
    Aspinall GO, Sturgeon RJ (1957) J Chem Soc 4:4469CrossRefGoogle Scholar
  6. 6.
    Timell TE (1964) Adv Carbohydr Chem Biochem 19:247CrossRefGoogle Scholar
  7. 7.
    Ishii T, Shimizu K (2001) In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, p 175Google Scholar
  8. 8.
    Bacic A, Harris PJ, Stone BA (1988) In: Preiss J (ed) The biochemistry of plants. Academic Press, New York, p 297Google Scholar
  9. 9.
    Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Roukolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Biomacromolecules 8:1934CrossRefGoogle Scholar
  10. 10.
    Svagan AJ, Azizi SMAS, Berglund LA (2007) Biomacromolecules 8:2556CrossRefGoogle Scholar
  11. 11.
    Hult E-L, Larsson PT, Iversen T (2001) Polymer 42(8):3309CrossRefGoogle Scholar
  12. 12.
    Siró I, Plackett D (2010) Cellulose 17:459CrossRefGoogle Scholar
  13. 13.
    Turbak AF, Snyder FW, Sandberg KR (1983) J Appl Polym Sci 37:815Google Scholar
  14. 14.
    Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) J Appl Polym Sci 37:797Google Scholar
  15. 15.
    Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) Eur Polym J 43:3434CrossRefGoogle Scholar
  16. 16.
    Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Biomacromolecules 9:1579CrossRefGoogle Scholar
  17. 17.
    Pitkänen L, Virkki L, Tenkanen M, Tuomainen P (2009) Biomacromolecules 10:1962CrossRefGoogle Scholar
  18. 18.
    Olsson A-M, Salmén L (2004) Carbohydr Res 339:813CrossRefGoogle Scholar
  19. 19.
    Aulin C, Gällstedt M, Lindström T (2010) Cellulose 17:559CrossRefGoogle Scholar
  20. 20.
    Kosikova B, Joniak D, Hricovini M, Mlynar J, Zakutna L (1993) Holzforschung 47:116CrossRefGoogle Scholar
  21. 21.
    Stevanic JS, Joly C, Mikkonen KS, Pirkkalainen K, Serimaa R, Rémond C, Toriz G, Gatenholm P, Tenkanen M, Salmén L (2011) J Appl Polym Sci 122(2):1030CrossRefGoogle Scholar
  22. 22.
    St-Germain FGT, Gray DG (1987) J Wood Chem Technol 7(1):33CrossRefGoogle Scholar
  23. 23.
    Almond A, Sheehan JK (2003) Glycobiology 13(4):255CrossRefGoogle Scholar
  24. 24.
    Levine H, Slade L (1988) In: Franks F (ed) Water science reviews. Cambridge University Press, Cambridge, p 79Google Scholar
  25. 25.
    Olsson A-M, Salmén L (1997) In: Hoffmeyer P (ed) International conference of COST action E8. Mechanical performance of wood and wood products. Wood-water relation. Technical University of Denmark, Copenhagen, pp 269–279Google Scholar
  26. 26.
    Olsson A-M, Salmén L (2004) In: Gatenholm P, Tenkanen M (eds) ACS Symp ser.864 hemicelluloses: science and technology. American Chemical Society, Washington, pp 184–197Google Scholar
  27. 27.
    Shanmuganathan K, Capadona JR, Rowan SJ, Weder C (2010) J Mater Chem 20:180CrossRefGoogle Scholar
  28. 28.
    Rodrigues NLGd, Thielemans W, Duftesne A (2006) Cellulose 13:261CrossRefGoogle Scholar
  29. 29.
    Back EL, Salmén NL (1982) Tappi 65(7):107Google Scholar
  30. 30.
    Åkerholm M, Hinterstoisser B, Salmén L (2004) Carbohydr Res 339(3):569CrossRefGoogle Scholar
  31. 31.
    Hinterstoisser B, Åkerholm M, Salmén L (2001) Carbohydr Res 334:27CrossRefGoogle Scholar
  32. 32.
    Liang CY, Basset KH, McGinnes EA, Marchessault RH (1960) Tappi 43(12):1017Google Scholar
  33. 33.
    Marchessault RH (1962) Pure Appl Chem 5:107CrossRefGoogle Scholar
  34. 34.
    Marchessault RH, Liang CY (1962) Xylans J Polym Sci 59:357CrossRefGoogle Scholar
  35. 35.
    McHugh TH, Krochta JM (1994) In: Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds) Edible coatings and films to improve food quality. Technomic Publishing Company, Lancaster, p 139Google Scholar
  36. 36.
    Sothornvit R, Krochta JM (2000) J Agricul Food Chem 48:3913CrossRefGoogle Scholar
  37. 37.
    Lange J, Wyser Y (2003) Packag Technol Sci 16:149CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jasna S. Stevanic
    • 1
    • 3
  • Elina Mabasa Bergström
    • 1
    • 2
  • Paul Gatenholm
    • 2
  • Lars Berglund
    • 3
  • Lennart Salmén
    • 1
    • 3
  1. 1.INNVENTIA AB, Fibre and Material ScienceStockholmSweden
  2. 2.Wallenberg Wood Science Center, Department of Chemical and Biological EngineeringChalmers University of TechnologyGothenburgSweden
  3. 3.Wallenberg Wood Science CenterThe Royal Institute of TechnologyStockholmSweden

Personalised recommendations