Journal of Materials Science

, Volume 47, Issue 18, pp 6614–6620 | Cite as

A study on environmental stress cracking in nano-SiO2-filled polycarbonate

  • Leyu LinEmail author
  • Alois K. Schlarb


In this study, the environmental stress cracking (ESC) resistance of nano-SiO2 particle-filled polycarbonate (PC) was investigated at room temperature by using a fracture mechanical test method. Two PC-based nanocomposites with nano-SiO2 content of 1 and 4 vol% were compounded using a twin-screw extruder. The incorporation of nanoparticles into PC leads to an improvement in ESC resistance, which increases with increased filler loading up to 4 vol%. Fractography analyses suggest that the formation of cavities/debonding and localized microdeformation of matrix induced by nanoparticles as a result of energy dissipation are responsible for the improvement of ESC resistance.


Stress Intensity Factor Crack Opening Displacement Damage Area Crack Propagation Rate Particle Debonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the German Research Foundation for the financial support according to the DFG-graduate Program 814. They are also grateful to Mrs. A. Zeuner, IFOS Kaiserslautern and Mr. K.P. Schmitt, INM Saarbrücken, for the friendly cooperation of experiments. The authors also gratefully acknowledge the cooperation of Mr. V. Demchuk, Polymer Engineering Hamburg, for the support regarding the preparation of the specimens and Bayer MaterialScience as well as Evonik Industries, Germany, for the supply of the materials.


  1. 1.
    Schlarb AK (2002) Med Device Technol 13:30Google Scholar
  2. 2.
    Moskala EJ, Jones M (1998) Med Plast Biomater, May, p 34Google Scholar
  3. 3.
    Borisova B, Kressler J (2003) Macro Mater Eng 288:509CrossRefGoogle Scholar
  4. 4.
    Choi BH, Weinhold J, Reuschle D, Kapur M (2009) Polym Eng Sci 49:2085. doi: 10.1002/pen.21458 CrossRefGoogle Scholar
  5. 5.
    Maxwell AS, Pilkington G (2008) Polym Eng Sci 48:360. doi: 10.1002/pen.20952 CrossRefGoogle Scholar
  6. 6.
    Sharif A, Mohammadi N, Ghaffarian SR (2009) J Appl Polym Sci 112:3249. doi: 10.1002/app.29893 CrossRefGoogle Scholar
  7. 7.
    Moskala EJ (1998) Polymer 39:675CrossRefGoogle Scholar
  8. 8.
    Jansen JA, Technimet S (2005) ANTEC-Conference Proceedings, vol 9, p 173Google Scholar
  9. 9.
    Sanches NB, Dias ML, Pacheco EBAV (2008) Polym Eng Sci 48:1953. doi: 10.1002/pen.21173 CrossRefGoogle Scholar
  10. 10.
    Jansen JA (2004) Adv Mater Process 162:50Google Scholar
  11. 11.
    Andrews EH, Bevan L (1972) Polymer 13:337CrossRefGoogle Scholar
  12. 12.
    Lewis PR (2009) Eng Fail Anal 16:1816. doi: 10.1016/j.engfailanal.2008.08.026 CrossRefGoogle Scholar
  13. 13.
    Luo W, Wang C, Zhao R, Tang X, Tomita Y (2008) Mater Sci Eng A Struct, 580. doi: 10.1016/j.msea.2006.07.176
  14. 14.
    Wang HT, Pan BR, Du QG, Li YQ (2003) Polym Test 22:125CrossRefGoogle Scholar
  15. 15.
    Paris PC (1964) In: Proceeding of the 10th Sagamor Conference, Syracuse UniversityGoogle Scholar
  16. 16.
    Altstädt V, Keiter S, Renner M, Schlarb AK (2004) Macromol Symp 214:3. doi: 10.1002/masy.2004510041 Google Scholar
  17. 17.
    Saxena A, Hudak SJ (1978) Int J Fract 14:453CrossRefGoogle Scholar
  18. 18.
    Ramsteiner F, Armbrust T (2001) Polym Test 20:321CrossRefGoogle Scholar
  19. 19.
    Moet A, Chudnovsky A (1982) Polym Eng Sci 22:922CrossRefGoogle Scholar
  20. 20.
    Sehanobish K, Baer E, Chudnovsky A, Moet A (1985) J Mater Sci 20:1934. doi: 10.1007/BF01112275 CrossRefGoogle Scholar
  21. 21.
    Wenzel B, Rosso P, Haupert F, Friedrich K (2006) Eng Fract Mech 73:2375CrossRefGoogle Scholar
  22. 22.
    Zhang H, Zhang Z, Yang JL, Friedrich K (2006) Polymer 47:679. doi: 10.1016/j.polymer.2005.11.084 CrossRefGoogle Scholar
  23. 23.
    Hull D (1996) J Mater Sci 31:4483. doi: 10.1007/BF00366344 CrossRefGoogle Scholar
  24. 24.
    Yu J, Wang G, Chen J, Zeng X, Wang W (2007) Polym Eng Sci 47:20. doi: 10.1002/pen.204801 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Composite Engineering cCeUniversity of KaiserslauternKaiserslauternGermany
  2. 2.INM—Leibniz-Institute for New MaterialsSaarbruckenGermany
  3. 3.Research Center OPTIMASUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations