Journal of Materials Science

, Volume 47, Issue 21, pp 7482–7497 | Cite as

Native point defects in binary InP semiconductors

  • Rohan Mishra
  • Oscar D. Restrepo
  • Ashutosh Kumar
  • Wolfgang Windl
First Principles Computations

Abstract

We present a holistic method to identify stable point defects in InP and the position of their defect states within the experimental band gap using density functional theory. We have calculated the formation energy of the different charge neutral native point defects for both stoichiometric and non-stoichiometric InP by determining the chemical potentials of In and P within the compound correctly from thermodynamic considerations. For stoichiometric InP, we predict phosphorous vacancies and phosphorus antisites to be most probable, among the neutral defects. For In-rich and P-rich compositions, we find indium and phosphorous antisites to be most stable, respectively, when neglecting charges. We then present a careful analysis to identify the defect levels associated with each point defect within the experimental band gap and compare it with existing experiments. By comparing calculations with different cell sizes and with varying band gaps from different exchange–correlation functionals (GGA vs. hybrid functional), we examine the dependence of the defect states on cell size and position of the excited states and analyze their nature and expected position in real systems along with the resulting charges on the defects. Finally, we include a recipe to approximate the Fermi level dependence of the chemical potential of charged defects in binary compounds, allowing calculation of their formation energies. Considering charges, the dominant point defects for stoichiometric InP are +4 and +2 charged indium and phosphorous antisites for Fermi energies <0.4 eV, +1 and +2 charged phosphorous vacancies and antisites for Fermi energies between 0.4 eV and 0.9 eV, +1 and −3 charged indium and phosphorous vacancies between 0.9 and 1.1 eV and −3 and −2 charged indium vacancies and antisites for Fermi energies >1.1 eV, respectively. For non-stoichiometric InP, the respective antisites are constitutional defects in their minimum-energy charge states, depending on the Fermi level.

References

  1. 1.
    Beling A, Campbell JC (2009) J Lightweight Technol 27(3):343CrossRefGoogle Scholar
  2. 2.
    Mokkapati S, Jagadish C (2009) Mater Today 12(4):22CrossRefGoogle Scholar
  3. 3.
    Ko D, Zhao XW, Reddy KM, Restrepo OD, Mishra R, Beloborodov IS, Trivedi N, Padture NP, Windl W, Yang FY, Johnston-Halperin E (2011) arXiv:1106.4492Google Scholar
  4. 4.
    Kennedy TA, Wilsey ND (1984) Appl Phys Lett 44(11):1089CrossRefGoogle Scholar
  5. 5.
    Jeon DY, Gislason HP, Donegan JF, Watkins GD (1987) Phys Rev B 36(2):1324CrossRefGoogle Scholar
  6. 6.
    Deiri M, Kanaah A, Cavenett BC, Kennedy TA, Wilsey ND (1988) Semicond Sci Technol 3(7):706CrossRefGoogle Scholar
  7. 7.
    Kuriyama K, Sakai K, Okada M, Yokoyama K (1995) Phys Rev B 52(20):14578CrossRefGoogle Scholar
  8. 8.
    Korshunov FP, Radautsan SI, Sobolev NA, Tiginyanu IM, Ursaki VV, Kudryavtseva EA (1989) Sov Phys Semicond 23(9):980Google Scholar
  9. 9.
    Korshunov FP, Radautsan SI, Sobolev NA, Tiginyanu IM, Kudryavtseva EA, Ursu VA, Tsyplenkov IN, Lamm VN, Sheraukhov VA (1990) Sov Phys Semicond 24(11):1263Google Scholar
  10. 10.
    Zhao Y, Dong Z, Miao S, Deng A, Yang J, Wang B (2006) J Appl Phys 100:123519CrossRefGoogle Scholar
  11. 11.
    Janardhanam V, Kumar AA, Reddy VR, Choi CJ (2011) Microelectron Eng 88:506CrossRefGoogle Scholar
  12. 12.
    Bretagnon T, Dannefaer S, Kerr D (1993) J Appl Phys 73(9):4697CrossRefGoogle Scholar
  13. 13.
    Dannefaer S, Bretagnon T, Kerr D (1996) J Appl Phys 80(7):3750CrossRefGoogle Scholar
  14. 14.
    von Bardeleben HJ (1986) Solid State Commun 57:137CrossRefGoogle Scholar
  15. 15.
    Guha S, Hasegawa F (1976) Solid State Electron 20:27CrossRefGoogle Scholar
  16. 16.
    Janardhanam V, Kumar AA, Reddy VR, Reddy PN (2010) J Mater Sci: Mater Electron 21:285CrossRefGoogle Scholar
  17. 17.
    Jansen RW (1990) Phys Rev B 41(11):7666CrossRefGoogle Scholar
  18. 18.
    Caldas MJ, Dabrowski J, Fazzio A, Scheffler M (1990) Phys Rev Lett 65(16):2046CrossRefGoogle Scholar
  19. 19.
    Alatalo M, Nieminen RM, Puska MJ, Seitsonen AP, Virkunnen R (1993) Phys Rev B 47(11):6381CrossRefGoogle Scholar
  20. 20.
    Seitsonen AP, Virkkunen R, Puska MJ, Nieminen RM (1994) Phys Rev B 49(9):5253CrossRefGoogle Scholar
  21. 21.
    Schmidt TM, Miwa RH, Fazzio A, Mota R (1999) Phys B 273–274:831CrossRefGoogle Scholar
  22. 22.
    Schmidt TM, Miwa RH, Fazzio A, Mota R (1999) Phys Rev B 60(24):16475CrossRefGoogle Scholar
  23. 23.
    Castleton CWM, Mirbt S (2003) Phys B 340–342:407CrossRefGoogle Scholar
  24. 24.
    Castleton CWM, Mirbt S (2004) Phys Rev B 70:195202CrossRefGoogle Scholar
  25. 25.
    Castleton CWM, Höglund A, Mirbt S (2006) Phys Rev B 73:035215CrossRefGoogle Scholar
  26. 26.
    Höglund A, Castleton CWM, Göthelid M, Johansson B, Mirbt S (2006) Phys Rev B 74:075332CrossRefGoogle Scholar
  27. 27.
    Castleton CWM, Höglund A, Mirbt S (2009) Model Simulat Mater Sci Eng 17:084003CrossRefGoogle Scholar
  28. 28.
    Hagen M, Finnis MW (1998) Philos Mag A 77:447CrossRefGoogle Scholar
  29. 29.
    Sen D, Windl W (2007) J Comp Theoret Nanosci 4:1CrossRefGoogle Scholar
  30. 30.
    Mishra R, Restrepo OD, Woodward PM, Windl W (2010) Chem Mater 22:6092CrossRefGoogle Scholar
  31. 31.
    Mayer J, Elsässer C, Fähnle M (1995) Phys Status Solidi B 191:283CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefGoogle Scholar
  33. 33.
    Heyd J, Scuserial GE, Ernzerhof M (2003) J Chem Phys 118:8207CrossRefGoogle Scholar
  34. 34.
    Heyd J, Scuserial GE, Ernzerhof M (2006) J Chem Phys 124:219906CrossRefGoogle Scholar
  35. 35.
    Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Angyan JG (2006) J Chem Phys 124:154709CrossRefGoogle Scholar
  36. 36.
    Mishra R, Restrepo OD, Rajan S, Windl W (2011) Appl Phys Lett 98:232114CrossRefGoogle Scholar
  37. 37.
    Alkauskas A, Broqvist P, Pasquarello A (2011) Phys Status Solidi B 248:775CrossRefGoogle Scholar
  38. 38.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  39. 39.
    Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223CrossRefGoogle Scholar
  40. 40.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  41. 41.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251CrossRefGoogle Scholar
  42. 42.
    Vanderbilt D (1990) Phys Rev B 41:R7892CrossRefGoogle Scholar
  43. 43.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  44. 44.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  45. 45.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  46. 46.
    Zhang SB, Northrup JE (1991) Phys Rev Lett 67(17):2339CrossRefGoogle Scholar
  47. 47.
    Torpo L, Marlo M, Staab TEM, Nieminen RM (2001) J Phys 13:6203Google Scholar
  48. 48.
    Gao F, Weber WJ, Xiao HY, Zu XT (2009) Nucl Instr Meth Phy Res B 267:2995CrossRefGoogle Scholar
  49. 49.
    Daw MS, Windl W, Carlson NN, Laudon M, Masquelier MP (2001) Phys Rev B 64:045205CrossRefGoogle Scholar
  50. 50.
    Batista ER, Heyd J, Hennig RG, Uberuaga BP, Martin RL, Scuseria GE, Umrigar CJ, Wilkins JW (2006) Phys Rev B 74:121102CrossRefGoogle Scholar
  51. 51.
    Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) J Appl Phys 89:5815CrossRefGoogle Scholar
  52. 52.
    Windl W, Bunea MM, Stumpf M, Dunham ST, Masquelier MP (1999) Phys Rev Lett 83:4345CrossRefGoogle Scholar
  53. 53.
    Windl W (2004) Phys Status Solidi B 241:2313CrossRefGoogle Scholar
  54. 54.
    Windl W, Sankey OF, Menéndez J (1998) Phys Rev B 57:2431CrossRefGoogle Scholar
  55. 55.
    Hjalmarson HP, Vogl P, Wolford DJ, Dow JD (1980) Phys Rev Lett 44:810CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rohan Mishra
    • 1
  • Oscar D. Restrepo
    • 1
  • Ashutosh Kumar
    • 1
  • Wolfgang Windl
    • 1
  1. 1.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations