Advertisement

Journal of Materials Science

, Volume 47, Issue 18, pp 6522–6534 | Cite as

Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy

  • O. N. Senkov
  • S. V. Senkova
  • D. M. Dimiduk
  • C. Woodward
  • D. B. Miracle
Article

Abstract

Isothermal oxidation behavior of a refractory high-entropy NbCrMo0.5Ta0.5TiZr alloy was studied during heating at 1273 K for 100 h in flowing air. Continuous weight gain occurred during oxidation, and the time dependence of the weight gain per unit surface area was described by a parabolic dependence with the time exponent n = 0.6. X-ray diffraction and scanning electron microscopy accompanied by energy-dispersive X-ray spectroscopy showed that the continuous oxide scale was made of complex oxides and only local (on the submicron levels) redistribution of the alloying elements occurred during oxidation. The alloy has a better combination of mechanical properties and oxidation resistance than commercial Nb alloys and earlier reported developmental Nb–Si–Al–Ti and Nb–Si–Mo alloys.

Keywords

Oxide Layer Oxide Scale Lave Phase BCC1 Phase Unit Surface Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Technical support from Drs. Carmen Carney and Fred Meisenkothen is greatly appreciated. This work was supported through the Air Force Research Laboratory Director’s Fund and through USAF contract No. FA8650-10-5226.

References

  1. 1.
    Dimiduk DM, Perepezko JH (2003) MRS Bull 28:639–645CrossRefGoogle Scholar
  2. 2.
    MacKay RA, Gabb TP, Smialek JL, Nathal MV (2009) Alloy design challenge: development of low density superalloys for turbine blade applications, NASA/TM—2009-215819Google Scholar
  3. 3.
    Subramanian PR, Mendiratta MG, Dimiduk DM, Stucke MA (1997) Mater Sci Eng A2390240:1–13Google Scholar
  4. 4.
    Bewlay BP, Jackson MR, Zhao J-C, Subramanian PR (2003) Metall Mater Trans A 34A:2043–2052CrossRefGoogle Scholar
  5. 5.
    Perepezko JH (2009) Science 326(5956):1068–1069CrossRefGoogle Scholar
  6. 6.
    Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Intermetallics 18:1758–1765CrossRefGoogle Scholar
  7. 7.
    Senkov ON, Wilks GB, Scott JM, Miracle DB (2011) Intermetallics 19:698–706CrossRefGoogle Scholar
  8. 8.
    Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF (2011) J Alloys Comp 509:6043–6048CrossRefGoogle Scholar
  9. 9.
    Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF (2010) J Mater Sci. doi: 10.1007/s10853-012-6260-2
  10. 10.
    Senkov ON, Woodward CF (2011) Mater Sci Eng, A 529:311–320CrossRefGoogle Scholar
  11. 11.
    Yeh J-W, Chen S-K, Lin S-J, Gan J-Y, Chin T-S, Shun T–T, Tsau C-H, Chang S-Y (2004) Adv Eng Mater 6(5):299–303CrossRefGoogle Scholar
  12. 12.
    Yeh J-W (2006) Annales de Chimie: Science des Materiaux 31:633–648CrossRefGoogle Scholar
  13. 13.
    Yeh J-W, Chen Y-L, Lin S-J, Chen S-K (2007) Mater Sci Forum 560:1–9CrossRefGoogle Scholar
  14. 14.
    Pint BA, DiStefano JR, Wright IG (2006) Mater Sci Eng, A 415:255–263CrossRefGoogle Scholar
  15. 15.
    Perkins RA, Chiang KT, Meier GH (1988) Scripta Metall 22:419–424CrossRefGoogle Scholar
  16. 16.
    Subramanian PR, Mendiratta MG, Dimiduk DM, Stuke MA (1997) Mater Sci Eng A239–240:1–13Google Scholar
  17. 17.
    Birks N, Meier GH (1983) Introduction to high temperature oxidation of metals. Edward Arnold (Publishers) Ltd, LondonGoogle Scholar
  18. 18.
    Kubaschewski O, Hopkins BE (1962) Oxidation of metals and alloys, 2nd edn. Butterworth and Co. Ltd, LondonGoogle Scholar
  19. 19.
    West JM (1980) Basic corrosion and oxidation. Ellis Horwood Limited, Chichester, 1980Google Scholar
  20. 20.
    Bernstein HL (1987) Metall Trans A 18A:975–985Google Scholar
  21. 21.
    Harwood JJ (1956) Materials and Methods 44(6):84–89Google Scholar
  22. 22.
    Mendiratta MG, Parthasarathy TA, Dimiduk DM (2002) Intermetallics 10:225–232CrossRefGoogle Scholar
  23. 23.
    Meyer M, Kramer M, Akinc M (1996) Adv Mater 8(1):85–88CrossRefGoogle Scholar
  24. 24.
    Perkins RA, Mejer GH (1990) JOM 42(8):17–21CrossRefGoogle Scholar
  25. 25.
    Jackson MR, Bewlay BP, Rowe RG, Skelly DW, Lipsitt HA (1996) JOM 48(1):39–44CrossRefGoogle Scholar
  26. 26.
    Yao D, Zhou C, Yang J, Chen H (2009) Corros Sci 51:2619–2627CrossRefGoogle Scholar
  27. 27.
    Menon ESK, Mendiratta MG, Demiduk DM (2001) In: Hemker KJ, Dimiduk DM, Clemens H, Darolia R, Inui H, Larsen JM, Sikka VK, Thomas M, Whittenberger JD (eds) Structural Intermetallics TMS, Materials Park, pp 591–600Google Scholar
  28. 28.
    Murayama Y, Hanada S (2002) Sci Tech Adv Mater 2:145–156CrossRefGoogle Scholar
  29. 29.
    Chattopadhyay K, Mitra R, Ray KK (2008) Metall Mater Trans A 39A:577–592CrossRefGoogle Scholar
  30. 30.
    Perkins RA, Padgett RA Jr (1977) Acta Metall 25:1221–1230CrossRefGoogle Scholar
  31. 31.
    Farraro RJ, McLellan RB (1978) Mater Sci Eng 33:113–116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • O. N. Senkov
    • 1
    • 2
  • S. V. Senkova
    • 1
    • 2
  • D. M. Dimiduk
    • 1
  • C. Woodward
    • 1
  • D. B. Miracle
    • 1
  1. 1.Air Force Research Laboratory, Materials and Manufacturing DirectorateWright-Patterson Air Force BaseUSA
  2. 2.UES, IncDaytonUSA

Personalised recommendations