Journal of Materials Science

, Volume 47, Issue 21, pp 7399–7416 | Cite as

Recent progress in ab initio simulations of hafnia-based gate stacks

  • H. Zhu
  • C. Tang
  • L. R. C. Fonseca
  • R. RamprasadEmail author
First Principles Computations


The continuous size downscaling of complementary metal–oxide–semiconductor (CMOS) transistors has led to the replacement of SiO2 with a HfO2-based high dielectric constant (or high-k) oxide, and the polysilicon electrode with a metal gate. The approach to this technological evolution has spurred a plethora of fundamental research to address several pressing issues. This review focusses on the large body of first principles (or ab initio) computational work employing conventional density functional theory (DFT) and beyond-DFT calculations pertaining to HfO2-based dielectric stacks. Specifically, structural, thermodynamic, electronic, and point-defect properties of bulk HfO2, Si/HfO2 interfaces, and metal/HfO2 interfaces are covered in detail. Interfaces between HfO2 and substrates with high mobility such as Ge and GaAs are also briefly reviewed. In sum, first principles studies have provided important insights and guidances to the CMOS research community and are expected to play an even more important role in the future with the further optimization and “scaling down” of transistors.


Density Functional Theory HfO2 Local Density Approximation Valence Band Maximum Conduction Band Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Partial support of this study by grants from the National Science Foundation, the Office of Naval Research, the Alexander von Humboldt Foundation and the Max Planck Society are gratefully acknowledged.


  1. 1.
    Moore G (1975) IEDM Tech Dig 22:11Google Scholar
  2. 2.
    Chau R et al (2007) Nature Mater 6:810CrossRefGoogle Scholar
  3. 3.
    Tyagi S et al. (2005) IEEE IEDM Technical Digest 2005 Proceedings: 245Google Scholar
  4. 4.
    Muller D, Sorsch T, Moccio S, Baumann F, Evans-Lutterodt K, Timp G (1999) Nature 399:758CrossRefGoogle Scholar
  5. 5.
    Robertson J (2006) Rep Prog Phys 69:327CrossRefGoogle Scholar
  6. 6.
    Robertson J (2005) Solid-State Electron 49:283CrossRefGoogle Scholar
  7. 7.
    Schlom DG, Guha S, Datta S (2008) MRS Bull 33:1017CrossRefGoogle Scholar
  8. 8.
    Houssa M et al (2006) Mater Sci Eng R 51:37CrossRefGoogle Scholar
  9. 9.
    Choi JH et al (2011) Mater Sci Eng R 72:97CrossRefGoogle Scholar
  10. 10.
    Wilk GD et al (2001) J Appl Phys 89:5243CrossRefGoogle Scholar
  11. 11.
    Kawamoto A et al (2001) J Comput Aided Mater Des 8:39CrossRefGoogle Scholar
  12. 12.
    Gerritsen E et al (2005) Solid-State Electron 49:1767CrossRefGoogle Scholar
  13. 13.
    Kwon C et al (1998) J Appl Phys 83:7052CrossRefGoogle Scholar
  14. 14.
    Mistry K et al. (2007) IEEE IEDM 2007 Proceedings: 247Google Scholar
  15. 15.
    Wong H, Iwai H (2006) Microelectron Eng 83:1867CrossRefGoogle Scholar
  16. 16.
    Wong H-SP (2002) IBM J Res Dev 46:133CrossRefGoogle Scholar
  17. 17.
    Wallace RM, Wilk GD (2003) Crit Rev Solid State Mater Sci 28:231CrossRefGoogle Scholar
  18. 18.
    Cho D-Y et al (2005) Appl Phys Lett 86:041913CrossRefGoogle Scholar
  19. 19.
    Demkov AA et al (2007) Microelectron Reliab 47:686CrossRefGoogle Scholar
  20. 20.
    Robertson J (2009) J Vac Sci Technol B 27:277CrossRefGoogle Scholar
  21. 21.
    Demkov AA (2008) In: Korkin A, Rosei F (eds) Nanoelectronics and photonics. Springer, Berlin, p 171Google Scholar
  22. 22.
    Lowther JE, Dewhurst JK, Leger JM et al (1999) Phys Rev B 60:14485CrossRefGoogle Scholar
  23. 23.
    Demkov AA (2001) Phys Status Solidi B 226:57CrossRefGoogle Scholar
  24. 24.
    Zhao XY, Vanderbilt D (2002) Phys Rev B 65:075105CrossRefGoogle Scholar
  25. 25.
    Zhao XY, Vanderbilt D (2002) Phys Rev B 65:233106CrossRefGoogle Scholar
  26. 26.
    Terki R, Feraoun H, Bertrand G (2005) Comput Mater Sci 33:44CrossRefGoogle Scholar
  27. 27.
    Rignanese GM, Gonze X, Jun G (2004) Phys Rev B 69:184301CrossRefGoogle Scholar
  28. 28.
    Zhao X, Ceresoli D, Vanderbilt D (2005) Phys Rev B 71:085107CrossRefGoogle Scholar
  29. 29.
    Beltrán JI et al (2008) New J Phys 10:063031CrossRefGoogle Scholar
  30. 30.
    Luo X, Zhou W, Ushakov SV, Navrotsky A, Demkov AA (2009) Phys Rev B 80:134119CrossRefGoogle Scholar
  31. 31.
    Zheng JX, Ceder G, Maxisch T, Chim WK, Choi WK (2007) Phys Rev B 75:104112CrossRefGoogle Scholar
  32. 32.
    Foster AS, Lopez Gejo F, Shluger AL, Nieminen RM (2002) Phys Rev B 65:174117CrossRefGoogle Scholar
  33. 33.
    Kang J, Lee E-C, Chang KJ (2003) Phys Rev B 68:054106CrossRefGoogle Scholar
  34. 34.
    Fabris S, Paxton AT, Finnis MW (2001) Phys Rev B 63:094101CrossRefGoogle Scholar
  35. 35.
    King-Smith RD, Vanderbilt D (1994) Phys Rev B 49:5828Google Scholar
  36. 36.
    Parlinski K, Li ZQ, Kawazoe Y (1997) Phys Rev Lett 78:4063Google Scholar
  37. 37.
    Hakala MH et al (2006) J Appl Phys 100:043708CrossRefGoogle Scholar
  38. 38.
    Gavrikov AV (2007) J Appl Phys 101:014310CrossRefGoogle Scholar
  39. 39.
    Zhu H, Tang C, Ramprasad R (2010) Phys Rev B 82:235413CrossRefGoogle Scholar
  40. 40.
    Fiorentini V, Gulleri G (2002) Phys Rev Lett 89:266101CrossRefGoogle Scholar
  41. 41.
    Robertson J (2002) J Non-Crystalline Solids 303:94CrossRefGoogle Scholar
  42. 42.
    Puthenkovilakam R, Carter EA, Chang JP (2004) Phys Rev B 69:155329CrossRefGoogle Scholar
  43. 43.
    Dong YF, Wang SJ, Feng YP, Huan ACH (2006) Phys Rev B 73:045302CrossRefGoogle Scholar
  44. 44.
    Fonseca LRC, Demkov AA, Knizhnik A (2003) Phys Status Solidi B 329:48CrossRefGoogle Scholar
  45. 45.
    Robertson J (2000) J Vac Sci Technol B 18:1785CrossRefGoogle Scholar
  46. 46.
    Kita Y, Yoshida S, Hosoi T, Shimura T, Shiraishi K, Nara Y, Yamada K, Watanabe H (2009) Appl Phys Lett 94:122905CrossRefGoogle Scholar
  47. 47.
    Wang XP, Yu HY, Li M-F, Zhu CX, Biesemans S, Chin A, Sun YY, Feng YP, Lim A, Yeo Y-C, Loh WY, Lo GQ, Kwong D-L (2007) IEEE Electron Device Lett 28:258CrossRefGoogle Scholar
  48. 48.
    Wen H-C, Majhi P, Choi K, Park CS, Alshareef HN, Harris HR, Luan H, Niimi H, Park H-B, Bersuker G, Lysaght PS, Kwong D-L, Song SC, Lee BH, Jammy R (2008) Microelectron Eng 85:2CrossRefGoogle Scholar
  49. 49.
    Sharia O, Tse K, Robertson J, Demkov AA (2009) Phys Rev B 79:125305CrossRefGoogle Scholar
  50. 50.
    Sharia O, Tse K, Robertson J, Demkov AA (1999) Phys Rev B 67:681Google Scholar
  51. 51.
    Zhong W, Vanderbilt D, Rabe KM (1995) Phys Rev B 52:6301CrossRefGoogle Scholar
  52. 52.
    Deák P et al (2010) Phys Rev B 81:153203CrossRefGoogle Scholar
  53. 53.
    Hyed J et al (2005) J Chem Phys 123:174101CrossRefGoogle Scholar
  54. 54.
    Krukau AV et al (2006) J Chem Phys 125:224106CrossRefGoogle Scholar
  55. 55.
    Ferreira LG, Marques M, Teles LK (2008) Phys Rev B 78:125116CrossRefGoogle Scholar
  56. 56.
    Ribeiro M, Fonseca LRC, Ferreira LG (2009) Phys Rev B 79:241312(R)CrossRefGoogle Scholar
  57. 57.
    Ribeiro M, Fonseca LRC, Ferreira LG (2011) Europhys Lett 94:27001CrossRefGoogle Scholar
  58. 58.
    Ribeiro M, Fonseca LRC, Sadowski T, Ramprasad R (2012) J Appl Phys 111:073708Google Scholar
  59. 59.
    Hedin L (1965) Phys Rev 139:A796CrossRefGoogle Scholar
  60. 60.
    Rinke P, Janotti A, Scheffler M, Vande Walle CG (2009) Phys Rev Lett 102:026402CrossRefGoogle Scholar
  61. 61.
    Jain M et al (2011) Phys Rev Lett 107:216806CrossRefGoogle Scholar
  62. 62.
    Gruning M, Shaltaf R, Rignanese G-M (2010) Phys Rev B 81:035330CrossRefGoogle Scholar
  63. 63.
    Komsa H-P, Broqvist P, Pasquarello A (2010) Phys Rev B 81:205118CrossRefGoogle Scholar
  64. 64.
    Broqvist P, Alkauskas A, Godet J, Pasquarello A (2009) J Appl Phys 105:061603CrossRefGoogle Scholar
  65. 65.
    Prodhomme P-Y, Fontaine-Vive F, Vander Geest A, Blaise P, Even J (2011) Appl Phys Lett 99:022101CrossRefGoogle Scholar
  66. 66.
    Jiang H et al (2010) Phys Rev B 75:085119CrossRefGoogle Scholar
  67. 67.
    Ramprasad R, Zhu H, Rinke P, Scheffler M (2012) Phys Rev Lett 108:066404CrossRefGoogle Scholar
  68. 68.
    Alkauskas A et al (2011) Phys Status Solidi B 248:775CrossRefGoogle Scholar
  69. 69.
    Alkauskas A, Pasquarello A (2011) Phys Rev B 84:125206CrossRefGoogle Scholar
  70. 70.
    Komsa H et al (2010) Phys Rev B 81:205118CrossRefGoogle Scholar
  71. 71.
    Broqvist P, Alkauskas A, Pasquarello A (2010) Phys Status Solidi A 207:270Google Scholar
  72. 72.
    Guha S, Naraynan V (2009) Annu Rev Mater Res 39:181CrossRefGoogle Scholar
  73. 73.
    Frank MM et al (2006) Appl Phys Lett 89:112905CrossRefGoogle Scholar
  74. 74.
    Chang YC et al (2007) Appl Phys Lett 90:232904CrossRefGoogle Scholar
  75. 75.
    Coh S et al (2010) Phys Rev B 82:064101CrossRefGoogle Scholar
  76. 76.
    Xiong K et al (2008) J Appl Phys 104:074501CrossRefGoogle Scholar
  77. 77.
    Xiong K et al (2008) Appl Phys Lett 92:113504CrossRefGoogle Scholar
  78. 78.
    Lin L et al (2011) J Appl Phys 109:094502CrossRefGoogle Scholar
  79. 79.
    Luo X et al (2011) Phys Rev B 84:195309CrossRefGoogle Scholar
  80. 80.
    Rumaiz AK, Woicik JC, Carini GA, Siddons DP, Cockayne E, Huey E, Lysaght PS, Fischer DA, Genova V (2010) Appl Phys Lett 97:242108CrossRefGoogle Scholar
  81. 81.
    Broqvist P, Binder JF, Pasquarello A (2010) Appl Phys Lett 97:202908CrossRefGoogle Scholar
  82. 82.
    Golias E, Tsetseris L, Dimoulas A, Pantelides ST (2011) Microelectron Eng 88:427CrossRefGoogle Scholar
  83. 83.
    Wang W, Xiong K, Wallace RM, Cho K (2010) J Phys Chem C 114:22610CrossRefGoogle Scholar
  84. 84.
    Lin K-L et al (2011) J Appl Phys 109:084104CrossRefGoogle Scholar
  85. 85.
    Joshua Yang J et al (2012) MRS Bull 37:131CrossRefGoogle Scholar
  86. 86.
    Waser R et al (2009) Adv Mater 21:2632CrossRefGoogle Scholar
  87. 87.
    Pegraeve R et al. (2011) Symposium on VLSI Technology: 28Google Scholar
  88. 88.
    Perdew JP, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  89. 89.
    Shishkin M, Kresse G (2007) Phys Rev B 75:235102CrossRefGoogle Scholar
  90. 90.
    Vanderbilt D, Zhao X, Ceresoli D (2005) Thin Solid Films 486:125CrossRefGoogle Scholar
  91. 91.
    Cockayne E (2008) J Appl Phys 103:084103CrossRefGoogle Scholar
  92. 92.
    Lyons JL, Janotti A, Vande Walle CG (2011) Microelectron Eng 88:1452CrossRefGoogle Scholar
  93. 93.
    Hann RE et al (1985) J Am Ceram Soc 68:C285CrossRefGoogle Scholar
  94. 94.
    Adams DM et al (1991) J Phys Chem Solids 52:1181CrossRefGoogle Scholar
  95. 95.
    Kukli K et al (1996) Appl Phys Lett 68:3737CrossRefGoogle Scholar
  96. 96.
    Garcia JC (2004) Appl Phys Lett 85:5022CrossRefGoogle Scholar
  97. 97.
    Rignanese G-M (2005) J Phys Condens Matter 17:357CrossRefGoogle Scholar
  98. 98.
    Ceresoli D, Vanderbilt D (2006) Phys Rev B 74:125108CrossRefGoogle Scholar
  99. 99.
    Broqvist P, Pasquarello A (2007) Appl Phys Lett 90:082907CrossRefGoogle Scholar
  100. 100.
    Cherkaoui K et al (2008) J Appl Phys 104:064113CrossRefGoogle Scholar
  101. 101.
    Takeuchi H et al (2004) J Vac Sci Technol A 22:1337CrossRefGoogle Scholar
  102. 102.
    Park PK, Kang S-W (2006) Appl Phys Lett 89:192905CrossRefGoogle Scholar
  103. 103.
    Seo M et al (2010) Chem Mater 22:4419CrossRefGoogle Scholar
  104. 104.
    Makov G, Payne MC (1995) Phys Rev B 51:4014CrossRefGoogle Scholar
  105. 105.
    Schultz PA (2000) Phys Rev Lett 84:1942CrossRefGoogle Scholar
  106. 106.
    Freysoldt C et al (2009) Phys Rev Lett 102:016402CrossRefGoogle Scholar
  107. 107.
    Tang C, Ramprasad R (2010) Phys Rev B 81:161201(R)Google Scholar
  108. 108.
    Kaneta C, Yamasaki T (2007) Microelectron Eng 84:2370CrossRefGoogle Scholar
  109. 109.
    Broqvist P, Pasquarello A (2007) Microelectron Eng 84:2022CrossRefGoogle Scholar
  110. 110.
    Broqvist P, Pasquarello A (2006) Appl Phys Lett 89:262904CrossRefGoogle Scholar
  111. 111.
    Capron N, Broqvist P, Pasquarello A (2007) Appl Phys Lett 91:192905CrossRefGoogle Scholar
  112. 112.
    Foster AS et al (2002) Phys Rev Lett 22:225901CrossRefGoogle Scholar
  113. 113.
    Guha S, Narayanan V (2007) Phys Rev Lett 98:196101CrossRefGoogle Scholar
  114. 114.
    Chalker PR et al (2008) Appl Phys Lett 93:182911CrossRefGoogle Scholar
  115. 115.
    Gaskell JM et al (2007) Appl Phys Lett 91:112912CrossRefGoogle Scholar
  116. 116.
    Fischer D, Kersch Al (2008) Appl Phys Lett 92:012908CrossRefGoogle Scholar
  117. 117.
    Fischer D, Kersch Al (2008) J Appl Phys 104:084104CrossRefGoogle Scholar
  118. 118.
    Jaffe JE et al (2005) Phys Rev B 72:144107CrossRefGoogle Scholar
  119. 119.
    Stapper G et al (1999) Phys Rev B 59:797CrossRefGoogle Scholar
  120. 120.
    Debernardi A, Wiemer C, Fanciulli M (2008) Mater Sci Semicond Process 11:241CrossRefGoogle Scholar
  121. 121.
    Debernardi A (2012) Phys Rev B 85:024109CrossRefGoogle Scholar
  122. 122.
    Cho D, Park K, Choi B, Oh S, Chang Y, Kim D, Noh T, Jung R, Lee J, Bu S (2005) Appl Phys Lett 86:041913CrossRefGoogle Scholar
  123. 123.
    Qiu X, Liu H, Fang F, Ha M, Liu J (2006) Appl Phys Lett 88:072906CrossRefGoogle Scholar
  124. 124.
    King-Smith RD, Vanderbilt D (1993) Phys Rev B 47:1651CrossRefGoogle Scholar
  125. 125.
    Resta R (1994) Rev Mod Phys 66:899CrossRefGoogle Scholar
  126. 126.
    Bernardini F et al (1997) Phys Rev Lett 79:3958CrossRefGoogle Scholar
  127. 127.
    Wagmare UV, Rabe KM (2005) In: Demkov AA, Navrotsky A (eds) Materials fundamentals of gate dielectrics. Springer, New YorkGoogle Scholar
  128. 128.
    Getraux F et al (1998) Phys Rev Lett 81:3297CrossRefGoogle Scholar
  129. 129.
    Fu H, Bellaiche L (2003) Phys Rev Lett 91:057601CrossRefGoogle Scholar
  130. 130.
    Pignedoli CA, Curioni A, Andreoni W (2007) Phys Rev Lett 98:037602CrossRefGoogle Scholar
  131. 131.
    Shevlin SA, Curioni A, Andreoni W (2005) Phys Rev Lett 94:146401CrossRefGoogle Scholar
  132. 132.
    Giustino F, Umari P, Pasquarello A (2003) Phys Rev Lett 91:267601CrossRefGoogle Scholar
  133. 133.
    Shi N, Ramprasad R (2006) Phys Rev B 74:045318CrossRefGoogle Scholar
  134. 134.
    Massimiliano S, Spaldin NA (2006) Nature 443:679CrossRefGoogle Scholar
  135. 135.
    Nakhmanson SM et al (2005) Phys Rev B 72:115210CrossRefGoogle Scholar
  136. 136.
    Ramprasad R, Shi N (2005) Phys Rev B 72:052107CrossRefGoogle Scholar
  137. 137.
    Shi N, Ramprasad R (2005) Appl Phys Lett 87:262102CrossRefGoogle Scholar
  138. 138.
    Botti S et al (2002) Phys Rev Lett 89:216803CrossRefGoogle Scholar
  139. 139.
    Shi N, Ramprasad R (2007) Appl Phys Lett 91:242906CrossRefGoogle Scholar
  140. 140.
    Shi N, Ramprasad R (2008) Trans IEEE DEI 15:170Google Scholar
  141. 141.
    Zhao X, Vanderbilt D (2002) Phys Rev B 65:233106CrossRefGoogle Scholar
  142. 142.
    Rignanese GM et al (2004) Phys Rev B 69:184301CrossRefGoogle Scholar
  143. 143.
    Tang C, Tuttle B, Ramprasad R (2007) Phys Rev B 76:073306CrossRefGoogle Scholar
  144. 144.
    Tang C, Ramprasad R (2007) Phys Rev B 75:241302CrossRefGoogle Scholar
  145. 145.
    Tang C, Ramprasad R (2008) Appl Phys Lett 92:152911CrossRefGoogle Scholar
  146. 146.
    Tang C, Ramprasad R (2008) Appl Phys Lett 92:182908CrossRefGoogle Scholar
  147. 147.
    Kim KJ et al (2012) Appl Surf Sci 258:3552CrossRefGoogle Scholar
  148. 148.
    Miyata N et al (2003) Appl Phys Lett 82:3880CrossRefGoogle Scholar
  149. 149.
    Broqvist P, Alkauskas A, Pasquarello A (2008) Appl Phys Lett 92:132911CrossRefGoogle Scholar
  150. 150.
    Alkauskas A, Broqvist P, Devynck F, Pasquarello A (2008) Phys Rev Lett 101:106802CrossRefGoogle Scholar
  151. 151.
    Peressi M, Binggeli N, Baldereschi A (1998) J Phys D 31:1273CrossRefGoogle Scholar
  152. 152.
    Alkauskas A, Broqvist P, Pasquarello A (2008) Phys Rev Lett 101:046405CrossRefGoogle Scholar
  153. 153.
    Himpsel F, Mcfeely F, Talebibrahimi A, Yarmoff J, Hollinger G (1988) Phys Rev B 38:6084CrossRefGoogle Scholar
  154. 154.
    Keister J, Rowe J, Kolodziej J, Niimi H, Madey T, Lucovsky G (1999) J Vac Sci Technol B 17:1831CrossRefGoogle Scholar
  155. 155.
    Oshima M, Toyoda S, Okumura T, Okabayashi J, Kumigashira H, Ono K, Niwa M, Usuda K, Hirashita N (2003) Appl Phys Lett 83:2172CrossRefGoogle Scholar
  156. 156.
    Renault O, Barrett N, Samour D, Quiais-Marthon S (2004) Surf Sci 566:526CrossRefGoogle Scholar
  157. 157.
    Zhu H, Ramprasad R (2011) Phys Rev B 83:081416(R)Google Scholar
  158. 158.
    Yeo YC, King TJ, Hu CH (2002) J Appl Phys 92:7266CrossRefGoogle Scholar
  159. 159.
    Schaeffer JK, Fonseca LRC, Samavedam SB, Liang Y, Tobin PJ, White BE (2004) Appl Phys Lett 85:1826CrossRefGoogle Scholar
  160. 160.
    Lu C-H, Wong GMT, Deal MD, Tsai W, Majhi P, Chui CO, Visokay MR, Chambers JJ, Colombo L, Clements BM, Nishi Y (2005) Electron Device Lett 26(7):445CrossRefGoogle Scholar
  161. 161.
    Gu D, Dey SK, Majhi P (2006) Appl Phys Lett 89:082907CrossRefGoogle Scholar
  162. 162.
    Yang H, Son Y, Baek S, Hwang H (2005) Appl Phys Lett 86:092107CrossRefGoogle Scholar
  163. 163.
    Paffett MT, Gebhard SC, Windham RG, Koel BE (1990) J Phys Chem 94:6831CrossRefGoogle Scholar
  164. 164.
    Cho E et al (2008) Appl Phys Lett 92:233118CrossRefGoogle Scholar
  165. 165.
    Xiong K et al (2008) J Appl Phys 104:074501CrossRefGoogle Scholar
  166. 166.
    Engstrom U, Ryberg R (1999) Phys Rev Lett 82:2741CrossRefGoogle Scholar
  167. 167.
    Da Silva JLF, Stampfl C, Scheffler M (2006) Surf Sci 600:703CrossRefGoogle Scholar
  168. 168.
    Zhu H, Aindow M, Ramprasad R (2009) Phys Rev B 80:201406(R)Google Scholar
  169. 169.
    Zhu H, Ramprasad R (2011) J Appl Phys 109:083719CrossRefGoogle Scholar
  170. 170.
    Cho E, Lee B, Lee C-K, Han S, Jeon SH, Park BH, Kim Y-S (2008) Appl Phys Lett 92:233118CrossRefGoogle Scholar
  171. 171.
    Fonseca LRC, Knizhnik AA (2006) Phys Rev B 74:195304CrossRefGoogle Scholar
  172. 172.
    Fonseca LRC et al (2007) J Integr Circuits Syst 2:94Google Scholar
  173. 173.
    Bersch E, Rangan S, Bartynski RA, Garfunkel E, Vescovo E (2008) Phys Rev B 78:085114CrossRefGoogle Scholar
  174. 174.
    Yu HY et al (2004) IEEE Electron Device Lett 25:337CrossRefGoogle Scholar
  175. 175.
    Javey A et al (2003) Nature 424:654CrossRefGoogle Scholar
  176. 176.
    Li X et al (2008) Science 29:5867Google Scholar
  177. 177.
    Wang W, Hinkle CL, Vogel EM, Cho K, Wallace RM (2011) Microelectron Eng 88:1061CrossRefGoogle Scholar
  178. 178.
    Robertson J, Lin L (2011) Microelectron Eng 88:373CrossRefGoogle Scholar
  179. 179.
    Lin L, Robertson J (2011) Appl Phys Lett 98:082903CrossRefGoogle Scholar
  180. 180.
    Robertson J (2009) Appl Phys Lett 94:152104CrossRefGoogle Scholar
  181. 181.
    Komsa H-P, Pasquarello A (2011) Microelectron Eng 88:1436CrossRefGoogle Scholar
  182. 182.
    Afanas’ev VV, Badylevich M, Stesmans A, Brammertz G, Delabie A, Sionke S, O’Mahony A, Povey IM, Pemble ME, O’Connor E, Hurley PK, Newcomb SB (2008) Appl Phys Lett 93:212104Google Scholar
  183. 183.
    Seguini G, Perego M, Spiga S, Fanciulli M, Dimoulas A (2007) Appl Phys Lett 91:192902Google Scholar
  184. 184.
    Dalapati GK, Oh H-J, Lee SJ, Sridhara A, Wong ASW, Chi D (2008) Appl Phys Lett 92:042120Google Scholar
  185. 185.
    Wang W, Xiong K, Gong C, Wallace RM, Cho K (2011) J Appl Phys 109:063704CrossRefGoogle Scholar
  186. 186.
    Wang W, Gong C, Shan B, Wallace RM, Cho K (2011) Appl Phys Lett 98:232113CrossRefGoogle Scholar
  187. 187.
    Wang W, Xiong K, Lee G, Huang M, Wallace RM, Cho K (2010) Appl Surf Sci 256:6569CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • H. Zhu
    • 1
  • C. Tang
    • 2
  • L. R. C. Fonseca
    • 3
  • R. Ramprasad
    • 1
    Email author
  1. 1.Chemical, Materials and Biomolecular Engineering and Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.School of ChemistryThe University of SydneySydneyAustralia
  3. 3.Center for Semiconductor ComponentsState University of CampinasCampinasBrazil

Personalised recommendations