Journal of Materials Science

, Volume 47, Issue 21, pp 7564–7570 | Cite as

Electronic structure of Li2O2 {0001} surfaces

  • Maxwell D. Radin
  • Feng Tian
  • Donald J. SiegelEmail author
First Principles Computations


The surface properties of the Li2O2 discharge phase are expected to impact strongly the capacity, rate capability, and rechargeability of Li-oxygen batteries. Prior calculations have suggested that the presence of half-metallic surface states in Li2O2 may mitigate electrical passivation resulting from the growth of Li2O2, which is a bulk insulator. Here we revisit the electronic structure of bulk Li2O2 and the dominant Li2O2 {0001} surface by comparing results obtained with the PBE GGA functional, the HSE06 hybrid functional, and quasiparticle GW methods. Our results suggest that the bulk band gap lies between the value predicted by the G0W0 method, 5.15 eV, and the value predicted by the self-consistent quasiparticle GW (scGW) approximation, 6.37 eV. The PBE, HSE06, and scGW methods agree that the most stable surface, an oxygen-rich {0001} termination, is indeed half-metallic. This result supports the notion that the electronic structure of surfaces may play an important role in understanding performance limitations in Li-oxygen batteries.


Li2O2 Generalize Gradient Approximation Surface Electronic Structure G0W0 Calculation Lithium Vacancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support was provided by the U.S. Department of Energy’s U.S.-China Clean Energy Research Center for Clean Vehicle Consortium, Grant DE-PI0000012 and the University of Michigan-Shanghai Jiao Tong University Collaboration on Renewable Energy Science and Technology.


  1. 1.
    Cairns EJ, Albertus P (2010) Annu Rev Chem Biomol Eng 1(1):299CrossRefGoogle Scholar
  2. 2.
    Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) J Electrochem Soc 159(2):R1CrossRefGoogle Scholar
  3. 3.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Nat Mater 11(1):19CrossRefGoogle Scholar
  4. 4.
    Beattie SD, Manolescu DM, Blair SL (2009) J Electrochem Soc 156(1):A44. doi: 10.1149/1.3005989 CrossRefGoogle Scholar
  5. 5.
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1(14):2193. doi: 10.1021/jz1005384 CrossRefGoogle Scholar
  6. 6.
    McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) J Phys Chem Lett 2(10):1161. doi: 10.1021/jz200352v CrossRefGoogle Scholar
  7. 7.
    Freunberger SA, Chen YH, Peng ZQ, Griffin JM, Hardwick LJ, Barde F, Novak P, Bruce PG (2011) J Am Chem Soc 133(20):8040. doi: 10.1021/ja2021747 CrossRefGoogle Scholar
  8. 8.
    Xiao J, Hu JZ, Wang DY, Hu DH, Xu W, Graff GL, Nie ZM, Liu J, Zhang JG (2011) J Power Sources 196(13):5674. doi: 10.1016/j.jpowsour.2011.02.060 CrossRefGoogle Scholar
  9. 9.
    Xu W, Viswanathan VV, Wang DY, Towne SA, Xiao J, Nie ZM, Hu DH, Zhang JG (2011) J Power Sources 196(8):3894. doi: 10.1016/j.jpowsour.2010.12.065 CrossRefGoogle Scholar
  10. 10.
    Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H (2010) Electrochemistry 78(5):403CrossRefGoogle Scholar
  11. 11.
    Chase MW (1998) NIST-JANAF thermochemical tables. American Institute of Physics, WoodburyGoogle Scholar
  12. 12.
    Abraham KM, Jiang Z (1996) J Electrochem Soc 143(1):1CrossRefGoogle Scholar
  13. 13.
    Débart A, Bao J, Armstrong G, Bruce PG (2007) J Power Sources 174(2):1177. doi: 10.1016/j.jpowsour.2007.06.180 CrossRefGoogle Scholar
  14. 14.
    Lu YC, Kwabi DG, Yao KPC, Harding JR, Zhou JG, Zuin L, Shao-Horn Y (2011) Energy Environ Sci 4(8):2999. doi: 10.1039/c1ee01500a CrossRefGoogle Scholar
  15. 15.
    Laoire CO, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2011) J Electrochem Soc 158(3):A302. doi: 10.1149/1.3531981 CrossRefGoogle Scholar
  16. 16.
    Ogasawara T, Débart A, Holzapfel M, Novak P, Bruce PG (2006) J Am Chem Soc 128(4):1390. doi: 10.1021/ja056811q CrossRefGoogle Scholar
  17. 17.
    Read J (2002) J Electrochem Soc 149(9):A1190. doi: 10.1149/1.1498256 CrossRefGoogle Scholar
  18. 18.
    Thapa AK, Saimen K, Ishihara T (2010) Electrochem Solid State Lett 13(11):A165. doi: 10.1149/1.3481762 CrossRefGoogle Scholar
  19. 19.
    Zhang SS, Foster D, Read J (2010) J Power Sources 195(4):1235. doi: 10.1016/j.jpowsour.2009.08.088 CrossRefGoogle Scholar
  20. 20.
    Thapa AK, Ishihara T (2011) J Power Sources 196(16):7016. doi: 10.1016/j.jpowsour.2010.09.112 CrossRefGoogle Scholar
  21. 21.
    Lu YC, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y (2010) Electrochem Solid State Lett 13(6):A69. doi: 10.1149/1.3363047 CrossRefGoogle Scholar
  22. 22.
    Albertus P, Girishkumar G, McCloskey B, Sanchez-Carrera RS, Kozinsky B, Christensen J, Luntz AC (2011) J Electrochem Soc 158(3):A343. doi: 10.1149/1.3527055 CrossRefGoogle Scholar
  23. 23.
    Viswanathan V, Thygesen KS, Hummelshøj JS, Nørskov JK, Girishkumar G, McCloskey BD, Luntz AC (2011) J Chem Phys 135(21):214704CrossRefGoogle Scholar
  24. 24.
    Hummelshøj JS, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen KS, Luntz AC, Jacobsen KW, Nørskov JK (2010) J Chem Phys 132(7):071101. doi: 07110110.1063/1.3298994 CrossRefGoogle Scholar
  25. 25.
    Radin MD, Rodriguez JF, Tian F, Siegel DJ (2011) J Am Chem Soc 134(2):1093. doi: 10.1021/ja208944x CrossRefGoogle Scholar
  26. 26.
    Ong SP, Mo Y, Ceder G (2012) Phys Rev B 85(8):081105CrossRefGoogle Scholar
  27. 27.
    Kang J, Jung YS, Wei S-H, Dillon AC (2012) Phys Rev B 85(3):035210CrossRefGoogle Scholar
  28. 28.
    Garcia-Lastra JM, Bass JD, Thygesen KS (2011) J Chem Phys 135(12):121101CrossRefGoogle Scholar
  29. 29.
    Chen JZ, Hummelshøj JS, Thygesen KS, Myrdal JSG, Nørskov JK, Vegge T (2011) Catal Today 165(1):2. doi: 10.1016/j.cattod.2010.12.022 CrossRefGoogle Scholar
  30. 30.
    Seriani N (2009) Nanotechnology 20(44):445703. doi: 10.1088/0957-4484/20/44/445703 CrossRefGoogle Scholar
  31. 31.
    Mo Y, Ong SP, Ceder G (2011) Phys Rev B 84(20):205446CrossRefGoogle Scholar
  32. 32.
    Wulff G (1901) Z Krystallogr Miner 34(5/6):449Google Scholar
  33. 33.
    Xu W, Xu K, Viswanathan VV, Towne SA, Hardy JS, Xiao J, Nie Z, Hu D, Wang D, Zhang J-G (2011) J Power Sources 196(22):9631. doi: 10.1016/j.jpowsour.2011.06.099 CrossRefGoogle Scholar
  34. 34.
    Obrovac MN, Dunlap RA, Sanderson RJ, Dahn JR (2001) J Electrochem Soc 148(6):A576CrossRefGoogle Scholar
  35. 35.
    Poizot PL, Grugeon S, Dupont L, Tarascon J-M (2000) Nature 407:496CrossRefGoogle Scholar
  36. 36.
    Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. 37.
    Cococcioni M, de Gironcoli S (2005) Phys Rev B 71(3):035105. doi: 10.1103/PhysRevB.71.035105 CrossRefGoogle Scholar
  38. 38.
    Shishkin M, Kresse G (2007) Phys Rev B 75(23):235102CrossRefGoogle Scholar
  39. 39.
    Fuchs F, Furthmüller J, Bechstedt F, Shishkin M, Kresse G (2007) Phys Rev B 76(11):115109CrossRefGoogle Scholar
  40. 40.
    Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118(18):8207. doi: 10.1063/1.1564060 CrossRefGoogle Scholar
  41. 41.
    Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) J Chem Phys. doi: 10.1063/1.2404663 Google Scholar
  42. 42.
    Henderson TM, Paier J, Scuseria GE (2011) Phys Status Solidi B 248(4):767. doi: 10.1002/pssb.201046303 CrossRefGoogle Scholar
  43. 43.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  44. 44.
    Shishkin M, Marsman M, Kresse G (2007) Phys Rev Lett 99(24):246403CrossRefGoogle Scholar
  45. 45.
    Shishkin M, Kresse G (2006) Phys Rev B 74(3):035101CrossRefGoogle Scholar
  46. 46.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6(1):15CrossRefGoogle Scholar
  47. 47.
    Kresse G, Furthmüller J (1996) Phys Rev B 54(16):11169CrossRefGoogle Scholar
  48. 48.
    Kresse G, Hafner J (1993) Phys Rev B 47(1):558CrossRefGoogle Scholar
  49. 49.
    Kresse G, Hafner J (1994) Phys Rev B 49(20):14251CrossRefGoogle Scholar
  50. 50.
    Blöchl PE (1994) Phys Rev B 50(24):17953. doi: 10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  51. 51.
    Kresse G, Joubert D (1999) Phys Rev B 59(3):1758. doi: 10.1103/PhysRevB.59.1758 CrossRefGoogle Scholar
  52. 52.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13(12):5188CrossRefGoogle Scholar
  53. 53.
    Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49(23):16223CrossRefGoogle Scholar
  54. 54.
    Wu H, Zhang H, Cheng X, Cai L (2007) Philos Mag 87(23):3373. doi: 10.1080/14786430701286239 CrossRefGoogle Scholar
  55. 55.
    Zhuravlev Y, Kravchenko N, Obolonskaya O (2010) Russ J Phys Chem B 4(1):20. doi: 10.1134/s1990793110010045 CrossRefGoogle Scholar
  56. 56.
    Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Angyan JG (2006) J Chem Phys 124(15):154709. doi: 10.1063/1.2187006 CrossRefGoogle Scholar
  57. 57.
    Tasker PW (1979) J Phys C 12(22):4977CrossRefGoogle Scholar
  58. 58.
    Claudine N (2000) J Phys 12(31):R367Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Maxwell D. Radin
    • 1
  • Feng Tian
    • 2
  • Donald J. Siegel
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of PhysicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Applied Physics ProgramUniversity of MichiganAnn ArborUSA
  4. 4.Michigan Energy InstituteUniversity of MichiganAnn ArborUSA

Personalised recommendations