Journal of Materials Science

, Volume 47, Issue 21, pp 7356–7366 | Cite as

First principles calculations of H-storage in sorption materials

First Principles Computations


A review of various contributions of first principles calculations in the area of hydrogen storage, particularly for the carbon-based sorption materials, is presented. Carbon-based sorption materials are considered as promising hydrogen storage media due to their light weight and large surface area. Depending upon the hybridization state of carbon, these materials can bind the hydrogen via various mechanisms, including physisorption, Kubas and chemical bonding. While attractive binding energy range of Kubas bonding has led to design of several promising storage systems, in reality the experiments remain very few due to materials design challenges that are yet to be overcome. Finally, we will discuss the spillover process, which deals with the catalytic chemisorption of hydrogen, and arguably is the most promising approach for reversibly storing hydrogen under ambient conditions.



AKS thankfully acknowledge financial support from the Board of Research in Nuclear Sciences Grant No. 2011/37C/51/BRNS, and National Program on Micro and Smart Systems (NpMASS) PARC No. 1:22. Work at Rice University was initially supported by the Department of Energy Hydrogen Sorption Center of Excellence, and at later stage by the DOE BES Grant No. ER46598.


  1. 1.
    Crabtree GW, Dresselhaus MS, Buchanan MV (2004) Phys Today 39Google Scholar
  2. 2.
    Schlapbach L, Züttel A (2001) Nature 414:353CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386:377CrossRefGoogle Scholar
  5. 5.
    Ding F, Lin Y, Krasnov PO, Yakobson BI (2007) J Chem Phys 127:164703CrossRefGoogle Scholar
  6. 6.
    Ye Y, Ahn CC, Witham C et al (1999) Appl Phys Lett 74:2307CrossRefGoogle Scholar
  7. 7.
    Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127CrossRefGoogle Scholar
  8. 8.
    Yoon M, Yang S, Wang E, Zhang Z (2007) Nano Lett 7:2578CrossRefGoogle Scholar
  9. 9.
    Pupysheva OV, Farajian AA, Yakobson BI (2008) Nano Lett 8:767CrossRefGoogle Scholar
  10. 10.
    Sandrock G (1999) J Alloy Compd 293:877CrossRefGoogle Scholar
  11. 11.
    Schüth F, Bogdanovi B, Felderhoff M (2004) Chem Commun 2249Google Scholar
  12. 12.
    Orimo S-i, Nakamori Y, Eliseo JR, Zuttel A, Jensen CM (2007) Chem Rev 107:4111CrossRefGoogle Scholar
  13. 13.
    Rowsell JLC, Yaghi OM (2006) J Am Chem Soc 128:1304CrossRefGoogle Scholar
  14. 14.
    Dinca M, Long JR (2008) Angew Chem Int Ed 47:6766CrossRefGoogle Scholar
  15. 15.
    Kubas GJ (1988) J Acc Chem Res 21:120CrossRefGoogle Scholar
  16. 16.
    Niu J, Rao BK, Jena P (1992) Phys Rev Lett 68:2277CrossRefGoogle Scholar
  17. 17.
    Gagliardi L, Pyykkö P (2004) J Am Chem Soc 126:15014CrossRefGoogle Scholar
  18. 18.
    Yildirim T, Ciraci S (2005) Phys Rev Lett 94:175501CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Kim Y-H, Dillon AC, Heben MJ, Zhang SB (2005) Phys Rev Lett 94:155504CrossRefGoogle Scholar
  20. 20.
    Michael P (2001) J Organomet Chem 635:1CrossRefGoogle Scholar
  21. 21.
    Gregory JK (2001) J Organomet Chem 635:37CrossRefGoogle Scholar
  22. 22.
    Tast F, Malinowski N, Frank S, Heinebrodt M, Billas IML, Martin TP (1996) Phys Rev Lett 77:3529CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Dai H (2000) Appl Phys Lett 77:3015CrossRefGoogle Scholar
  24. 24.
    Yildirim T, Íñiguez J, Ciraci S (2005) Phys Rev B 72:153403CrossRefGoogle Scholar
  25. 25.
    Sun Q, Jena P, Wang Q, Marquez M (2006) J Am Chem Soc 128:9741CrossRefGoogle Scholar
  26. 26.
    Kim Y-H, Zhao Y, Williamson A, Heben MJ, Zhang SB (2006) Phys Rev Lett 96:016102CrossRefGoogle Scholar
  27. 27.
    Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z (2008) Phys Rev Lett 100:206806CrossRefGoogle Scholar
  28. 28.
    Zhou W, Yildirim T, Durgun E, Ciraci S (2007) Phys Rev B 76:085434CrossRefGoogle Scholar
  29. 29.
    Phillips AB, Shivaram BS (2008) Phys Rev Lett 100:105505CrossRefGoogle Scholar
  30. 30.
    Sorokin PB, Lee H, Antipina LY, Singh AK, Yakobson BI (2011) Nano Lett 11:2660CrossRefGoogle Scholar
  31. 31.
    Sun Q, Wang Q, Jena P, Kawazoe Y (2005) J Am Chem Soc 127:14582CrossRefGoogle Scholar
  32. 32.
    Krasnov PO, Ding F, Singh AK, Yakobson BI (2007) J Phys Chem C 111:17977CrossRefGoogle Scholar
  33. 33.
    Philipsen PHT, Baerends EJ (1996) Phys Rev B 54:5326CrossRefGoogle Scholar
  34. 34.
    Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry. Wiley-Interscience, New YorkGoogle Scholar
  35. 35.
    Hawthorne MF, Zink JI, Skelton JM et al (2004) Science 303:1849CrossRefGoogle Scholar
  36. 36.
    Singh AK, Sadrzadeh A, Yakobson BI (2010) J Am Chem Soc 132:14126CrossRefGoogle Scholar
  37. 37.
    Farha OK, Spokoyny AM, Mulfort KL, Hawthorne MF, Mirkin CA, Hupp JT (2007) J Am Chem Soc 129:12680CrossRefGoogle Scholar
  38. 38.
    Spokoyny AM, Farha OK, Mulfort KL, Galli S, Hupp JT, Mirkin CA (2009) Small 5:1727CrossRefGoogle Scholar
  39. 39.
    Hamaed A, Trudeau M, Antonelli DM (2008) J Am Chem Soc 130:6992CrossRefGoogle Scholar
  40. 40.
    Dinca M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) J Am Chem Soc 128:16876CrossRefGoogle Scholar
  41. 41.
    Hoang TKA, Webb MI, Mai HV et al (2010) J Am Chem Soc 132:11792CrossRefGoogle Scholar
  42. 42.
    Vitillo JG, Regli L, Chavan S et al (2008) J Am Chem Soc 130:8386CrossRefGoogle Scholar
  43. 43.
    Shevlin SA, Guo ZX (2008) J Phys Chem C 112:17456CrossRefGoogle Scholar
  44. 44.
    Wang L, Lee K, Sun Y-Y et al (2009) ACS Nano 3:2995CrossRefGoogle Scholar
  45. 45.
    Cha J, Lim S, Choi CH, Cha M-H, Park N (2009) Phys Rev Lett 103:216102CrossRefGoogle Scholar
  46. 46.
    Bajdich M, Reboredo FA, Kent PRC (2010) Phys Rev B 82:081405CrossRefGoogle Scholar
  47. 47.
    Sun YY, Lee K, Wang L et al (2010) Phys Rev B 82:073401CrossRefGoogle Scholar
  48. 48.
    Kiran B, Kandalam AK, Jena P (2006) J Chem Phys 124:224703CrossRefGoogle Scholar
  49. 49.
    Durgun E, Jang Y-R, Ciraci S (2007) Phys Rev B 76:073413CrossRefGoogle Scholar
  50. 50.
    Lueking AD, Yang RT (2004) Appl Catal A 265:259CrossRefGoogle Scholar
  51. 51.
    Li Y, Yang RT (2005) J Am Chem Soc 128:726CrossRefGoogle Scholar
  52. 52.
    Zacharia R, Kim KY, Kibria AKMF, Nahm KS (2005) Chem Phys Lett 412:369CrossRefGoogle Scholar
  53. 53.
    Kim B-J, Lee Y-S, Park S-J (2008) J Colloid Interface Sci 318:530CrossRefGoogle Scholar
  54. 54.
    Conner WC, Pajonk GM, Teichner SJ (1986) Spillover of sorbed species. Academic Press, OrlandoGoogle Scholar
  55. 55.
    Lachawiec AJ, Qi G, Yang RT (2005) Langmuir 21:11418CrossRefGoogle Scholar
  56. 56.
    Lueking AD, Yang RT (2002) J Catal 206:165CrossRefGoogle Scholar
  57. 57.
    Chen CH, Huang CC (2008) Microporous Mesoporous Mater 112:553CrossRefGoogle Scholar
  58. 58.
    Yang FH, Yang RT (2002) Carbon 40:437CrossRefGoogle Scholar
  59. 59.
    Anson A, Lafuente E, Urriolabeitia E et al (2006) J Phys Chem B 110:6643CrossRefGoogle Scholar
  60. 60.
    Yoo E, Gao L, Komatsu T et al (2004) J Phys Chem B 108:18903CrossRefGoogle Scholar
  61. 61.
    Kim HS, Lee H, Han KS et al (2005) J Phys Chem B 109:8983CrossRefGoogle Scholar
  62. 62.
    Kim BJ, Lee YS, Park SJ (2008) Int J Hydrogen Energy 33:4112CrossRefGoogle Scholar
  63. 63.
    Reddy ALM, Ramaprabhu S (2008) Int J Hydrogen Energy 33:1028CrossRefGoogle Scholar
  64. 64.
    Wu H, Wexler D, Ranjbartoreh AR, Liu H, Wang G (2010) Int J Hydrogen Energy 35:6345CrossRefGoogle Scholar
  65. 65.
    Lin KY, Tsai WT, Yang TJ J Power SourcesGoogle Scholar
  66. 66.
    Back CK, Sandi G, Prakash J, Hranisavljevic J (2009) J Phys Chem B 110:16225CrossRefGoogle Scholar
  67. 67.
    Lupu D, Biris AR, Misan I, Jianu A, Holzhuter G, Burkel E (2004) Int J Hydrogen Energy 29:97CrossRefGoogle Scholar
  68. 68.
    Díaz E, León M, Ordóñez S (2010) Int J Hydrogen Energy 35:4576CrossRefGoogle Scholar
  69. 69.
    Marella M, Tomaselli M (2006) Carbon 44:1404CrossRefGoogle Scholar
  70. 70.
    Contescu CI, Brown CM, Liu Y, Bhat VV, Gallego NC (2009) J Phys Chem C 113:5886CrossRefGoogle Scholar
  71. 71.
    Li Y, Yang RT (2007) J Phys Chem C 111:11086CrossRefGoogle Scholar
  72. 72.
    Lachawiec AJ, DiRamondo TR, Yang RT (2008) Rev Sci Instrum 79:063906CrossRefGoogle Scholar
  73. 73.
    Tsao CS, Liu Y, Li M et al (2010) J Phys Chem Lett 1:1569CrossRefGoogle Scholar
  74. 74.
    Tsao CS, Tzeng YR, MS Yu et al (2010) J Phys Chem Lett 1:1060CrossRefGoogle Scholar
  75. 75.
    Zielinski M, Wojcieszak R, Monteverdi S, Mercy M, Bettahar MM (2005) Catal Commun 6:777CrossRefGoogle Scholar
  76. 76.
    Li Y, Yang RT, Liu Cj, Wang Z (2007) Ind Eng Chem Res 46:8277CrossRefGoogle Scholar
  77. 77.
    Li Y, Yang RT (2006) J Am Chem Soc 128:8136CrossRefGoogle Scholar
  78. 78.
    Stuckert N, Wang L, Yang RT (2010) Langmuir 26:11963CrossRefGoogle Scholar
  79. 79.
    Miller MA, Wang CY, Merrill GN (2009) J Phys Chem C 113:3222CrossRefGoogle Scholar
  80. 80.
    Zlotea C, Campesi R, Cuevas F et al (2010) J Am Chem Soc 132:2991CrossRefGoogle Scholar
  81. 81.
    Proch S, Herrmannsdofer J, Kempe R et al (2008) Chem Eur J 14:8204CrossRefGoogle Scholar
  82. 82.
    Li Y, Yang RT (2008) AIChE J 54:269CrossRefGoogle Scholar
  83. 83.
    Wang L, Yang RT (2010) Catal Rev 52:411CrossRefGoogle Scholar
  84. 84.
    Sofo J, Chaudhari A, Barber G (2007) Phys Rev B 75:4CrossRefGoogle Scholar
  85. 85.
    Stojkovic D, Zhang P, Lammert P, Crespi V (2003) Phys Rev B 68:5CrossRefGoogle Scholar
  86. 86.
    Lin Y, Ding F, Yakobson BI (2008) Phys Rev B 78:041402CrossRefGoogle Scholar
  87. 87.
    Suri M, Dornfeld M, Ganz E (2009) J Chem Phys 131:174703CrossRefGoogle Scholar
  88. 88.
    Zhou C, Wu J, Nie A, Forrey RC, Tachibana A, Cheng H (2007) J Phys Chem C 111:12773CrossRefGoogle Scholar
  89. 89.
    Chen L, Cooper AC, Pez GP, Cheng H (2007) J Phys Chem C 111:5514CrossRefGoogle Scholar
  90. 90.
    Singh AK, Ribas MA, Yakobson BI (2009) ACS Nano 3:1657CrossRefGoogle Scholar
  91. 91.
    Sha X, Knippenberg MT, Cooper AC, Pez GP, Cheng H (2008) J Phys Chem C 112:17465CrossRefGoogle Scholar
  92. 92.
    Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. World Scientific, SingaporeGoogle Scholar
  93. 93.
    Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill Book Co., New YorkGoogle Scholar
  94. 94.
    Duplock EJ, Scheffler M, Linda PJD (2004) Phys Rev Lett 92:225502CrossRefGoogle Scholar
  95. 95.
    Lee K, Kim Y-H, Sun YY et al (2010) Phys Rev Lett 104:236101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA
  3. 3.Department of ChemistryRice UniversityHoustonUSA

Personalised recommendations