Journal of Materials Science

, Volume 47, Issue 16, pp 6141–6150

Moisture-dependent elastic and strength anisotropy of European beech wood in tension



While the general mechanical behaviour of wood is known, its moisture-dependent elastic and strength anisotropy remains little studied. Given the anisotropic and hygroscopic nature of wood, a characterisation of wood mechanical behaviour will require knowledge of its moisture-dependent properties in relation to the three principal axes of anisotropy. The present study examines the influence of the moisture content (MC) on the elastic and strength anisotropy of beech wood (Fagus sylvatica L.). Selected elastic and strength parameters, including the anisotropic Young’s moduli, Poisson’s ratios, yield and ultimate stress values and the fracture toughness in the TR, TL, RT and RL directions, are determined in uniaxial tension and compact tension tests at different moisture conditions. A distinct moisture dependency is shown for the elastic and strength behaviour of beech wood. With the exception of some Poisson’s ratios, all investigated elastic and strength parameters are shown to decrease with increasing MC. The two- and three-dimensional representation of the compliance matrix, and the two-dimensional visualisation of a yield surface, provides a valuable overview on the moisture-dependent elastic and strength anisotropy of beech wood.


  1. 1.
    Tiemann HD (1906) Effect of moisture upon the strength and stiffness of wood. U.S Dept. of Agriculture, Forest Service Bul. 70Google Scholar
  2. 2.
    Neuhaus FH (1983) Holz Roh Werkst 41(1):21CrossRefGoogle Scholar
  3. 3.
    McBurney RS, Drow JT (1962) The elastic properties of wood: Young’s moduli and Poisson’s ratios of Douglas-fir and their relations to moisture content. Report No. 1528-D. U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory Madison, WisconsinGoogle Scholar
  4. 4.
    Kretschmann DE, Green DW (1996) Wood Fiber Sci 28(3):320Google Scholar
  5. 5.
    Hering S, Keunecke D, Niemz P (2011) Wood Sci Technol. doi:10.1007/s00226-011-0449-4 Google Scholar
  6. 6.
    Gerhards CC (1982) Wood Fiber Sci 14(1):4Google Scholar
  7. 7.
    Ross RJ (ed) (2010) Wood handbook: wood as an engineering material. General Technical Report FPL-GTR-190. U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, MadisonGoogle Scholar
  8. 8.
    Kufner M (1978) Holz Roh Werkst 36(11):435CrossRefGoogle Scholar
  9. 9.
    Goulet M (1960) Holz Roh Werkst 18(9):325CrossRefGoogle Scholar
  10. 10.
    Östman BAL (1985) Wood Sci Technol 19(2):103CrossRefGoogle Scholar
  11. 11.
    Kollmann F (1951) Technologie des Holzes und der Holzwerkstoffe. Springer, BerlinGoogle Scholar
  12. 12.
    Bodig J, Jayne BA (1993) Mechanics of wood and wood composites. Krieger Publishing Company, MalabarGoogle Scholar
  13. 13.
    Niemz P (1993) Physik des Holzes und der Holzwerkstoffe. DRW-Verlag Weinbrenner GmbH & Co, Leinfelden-EchterdingenGoogle Scholar
  14. 14.
    Schachner H, Reiterer A, Stanzl-Tschegg SE (2000) J Mater Sci Lett 19(20):1783CrossRefGoogle Scholar
  15. 15.
    Frühmann K, Reiterer A, Tschegg EK, Stanzl-Tschegg SE (2002) Philos Mag A 82(17):3289CrossRefGoogle Scholar
  16. 16.
    Smith I, Vasic S (2003) Mech Mater 35(8):803–815CrossRefGoogle Scholar
  17. 17.
    Schniewind AP, Pozniak RA (1971) Eng Fract Mech 2(3):223–233CrossRefGoogle Scholar
  18. 18.
    Prokopski G (1996) Int J Fract 79(4):R73CrossRefGoogle Scholar
  19. 19.
    Reiterer A, Tschegg S (2002) J Mater Sci 37(20):4487. doi:10.1023/A:1020610231862 CrossRefGoogle Scholar
  20. 20.
    Vasic S, Stanzl-Tschegg SE (2007) Holzforschung 61:367CrossRefGoogle Scholar
  21. 21.
    Scheffler M, Niemz P, Diener M, Lustig V, Hardtke HJ (2004) Eur J Wood Prod 62(2):93CrossRefGoogle Scholar
  22. 22.
    Ewing PD, Williams JG (1979) J Mater Sci 14(12):2959. doi:10.1007/BF00611480 CrossRefGoogle Scholar
  23. 23.
    Neumann AJ (1998) Ermittlung und Bewertung der elastischen Materialkennwerte von Vollholz in Abhängigkeit der Feuchte und der Anisotropie. Master Thesis, Technische Universität DresdenGoogle Scholar
  24. 24.
    Wommelsdorf O (1966) Dehnungs- und Querdehnungszahlen von Hölzern. Dissertation, Technische Hochschule HannoverGoogle Scholar
  25. 25.
    Deutsches Institut für Normung e. V. (DIN) (1979) DIN 52188. Prüfung von Holz; Bestimmung der Zugfestigkeit parallel zur FaserGoogle Scholar
  26. 26.
    Keunecke D, Hering S, Niemz P (2008) Wood Sci Technol 42(8):633CrossRefGoogle Scholar
  27. 27.
    American Society for Testing and Materials (ASTM) (1997) ASTM E399-90. Standard test method for plane-strain fracture toughness of metallic materialsGoogle Scholar
  28. 28.
    Smith I, Landis E, Gong M (2003) Fracture and fatigue in wood. Wiley, ChichesterGoogle Scholar
  29. 29.
    Choi D, Thorpe JL, Hann RB (1991) Wood Sci Technol 25(4):251CrossRefGoogle Scholar
  30. 30.
    Stamer J, Sieglerschmidt H (1933) Z Ver Dtsch Ing 77(19):503Google Scholar
  31. 31.
    Hearmon RFS, Barkas WW (1941) Proc Phys Soc 53(6):674CrossRefGoogle Scholar
  32. 32.
    Pozgaj A, Chovanec D, Kuriatko S, Babiak M (1993) Štruktúra a vlastnosti dreva. Priroda, BratislavaGoogle Scholar
  33. 33.
    Ozyhar T, Hering S, Sanabria SJ, Niemz P (2012) Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Sci Technol (accepted for publication)Google Scholar
  34. 34.
    Jeong GY, Hindman DP, Zink-Sharp A (2010) J Mater Sci 45(21):5820. doi:10.1007/s10853-010-4658-2 CrossRefGoogle Scholar
  35. 35.
    Conners TE, Medvecz CJ (1992) Wood Fiber Sci 24(4):413Google Scholar
  36. 36.
    Grimsel M (1999) Mechanisches Verhalten von Holz. Dissertation, Technische Universität DresdenGoogle Scholar
  37. 37.
    Hering S, Saft S, Resch E, Niemz P, Kaliske M (2012) Holzforschung 66(3):373CrossRefGoogle Scholar
  38. 38.
    Saft S, Kaliske M (2011) Comput Struct 89(23–24):2460Google Scholar
  39. 39.
    Resch E, Kaliske M (2010) Comput Struct 88(3–4):165CrossRefGoogle Scholar
  40. 40.
    Stanzl-Tschegg SE (2006) Int J fracture 139(3–4):459Google Scholar
  41. 41.
    Burgert I, Bernasconi A, Eckstein D (1999) Eur J Wood Prod 57(5):397CrossRefGoogle Scholar
  42. 42.
    Burgert I, Eckstein D (2001) Trees-Struct Funct 15(3):168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute for Building Materials (Wood Physics)ETH ZurichZurichSwitzerland

Personalised recommendations