Journal of Materials Science

, Volume 47, Issue 16, pp 6131–6140 | Cite as

Structure and properties of multi-walled carbon nanotube porous sheets with enhanced elongation

  • G. Mechrez
  • R. Y. Suckeveriene
  • R. Tchoudakov
  • A. Kigly
  • E. Segal
  • M. Narkis


In this article, multi-walled carbon nanotubes (MWNTs)/dodecyl benzene sulfonic acid (DBSA) porous sheet networks (PSNs) of enhanced extensibility were developed and characterized. The MWNT/DBSA networks possess failure strains of 8–12 %, markedly higher than the literature reported values of 0.5–4 %. The networks were prepared through micro-filtration of highly dispersed MWNT in DBSA aqueous solutions. The DBSA molecule has two functions: In the dispersion stage, DBSA functions as a dispersant leading to the establishment of stable individually dispersed MWNT, and in the MWNT porous sheet, the presence of DBSA within the nanotubes’ network creates a lubrication-like effect, enhancing the networks’ extensibility. In fact, it was found that DBSA is assembled in two modes within the nanotubes’ network: a fraction which is strongly adsorbed onto the CNT surface, and another fraction entrapped within the network as a DBSA/water solution. It should be noted that the composition of these systems is stable under ambient room temperature conditions. Comparison of MWNT networks prepared from the MWNT/DBSA dispersions and from the same but coagulated before filtration has shown superiority of the non-coagulated systems in relation to structure and mechanical properties. The prepared MWNT/DBSA PSNs of enhanced extensibility were developed without any modification by polymers, and they are characterized by high electrical conductivity and nano-porosity.


Thermal Gravimetric Analyzer Failure Strain Dodecyl Benzene Sulfonic Acid Dispersion Concentration Maximum Decomposition Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support of the Russell Berrie Nanotechnology Institute is gratefully acknowledged.


  1. 1.
    Iijima S (1991) Nature (London) 354:56CrossRefGoogle Scholar
  2. 2.
    M Meyyappan (ed) (2005) Carbon nanotubes: science and applicationsGoogle Scholar
  3. 3.
    Breuer O, Sundararaj U (2004) Polym Compos 25:630. doi: 10.1002/pc.20058 CrossRefGoogle Scholar
  4. 4.
    Fortunati E, D’Angelo F, Martino S, Orlacchio A, Kenny JM, Armentano I (2011) Carbon 49:2370. doi: 10.1016/j.carbon.2011.02.004 CrossRefGoogle Scholar
  5. 5.
    Suckeveriene RY, Zelikman E, Mechrez G et al (2011) J Appl Polym Sci 120:676. doi: 10.1002/app.33212 CrossRefGoogle Scholar
  6. 6.
    Kumar S, Rath T, Mahaling RN, Mukherjee M, Khatua BB, Das CK (2009) J Nanosci Nanotechnol 9:2981. doi: 10.1166/jnn.2009.012 CrossRefGoogle Scholar
  7. 7.
    CJ Frizzell, M in het Panhuis, DH Coutinho et al. (2005) Phys Rev B 72:245420–245421Google Scholar
  8. 8.
    Kim MH, Choi J-Y, Choi HK et al (2008) Adv Mater 20:457CrossRefGoogle Scholar
  9. 9.
    Kim YA, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS (2006) Chem Vap Deposition 12:327CrossRefGoogle Scholar
  10. 10.
    Lee BY, Heo K, Bak JH et al (2008) Nano Lett 8:4483CrossRefGoogle Scholar
  11. 11.
    Meng C, Liu C, Fan S (2010) Adv Mater (Weinheim, Ger) 22:535CrossRefGoogle Scholar
  12. 12.
    Wang D, Song P, Liu C, Wu W, Fan S (2008) Nanotechnology 19:075609/1Google Scholar
  13. 13.
    Zschoerper NP, Katzenmaier V, Vohrer U, Haupt M, Oehr C, Hirth T (2009) Carbon 47:2174CrossRefGoogle Scholar
  14. 14.
    Liu L, Ma W, Zhang Z (2011) Small 7:1504. doi: 10.1002/smll.201002198 CrossRefGoogle Scholar
  15. 15.
    Chen IWP, Liang Z, Wang B, Zhang C (2010) Carbon 48:1064CrossRefGoogle Scholar
  16. 16.
    Cooper SM, Chuang HF, Cinke M, Cruden BA, Meyyappan M (2003) Nano Lett 3:189CrossRefGoogle Scholar
  17. 17.
    X Fu, C Zhang, T Liu, R Liang, B Wang (2010) Nanotechnology 21:235701Google Scholar
  18. 18.
    Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Science 303:62CrossRefGoogle Scholar
  19. 19.
    Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) Smart Mater Struct 15:737CrossRefGoogle Scholar
  20. 20.
    Pacios M, del Valle M, Bartroli J, Esplandiu MJ (2008) J Electroanal Chem 619–620:117Google Scholar
  21. 21.
    Park JG, Louis J, Cheng Q et al (2009) Nanotechnology 20:415702/1Google Scholar
  22. 22.
    Whitten Philip G, Gestos Adrian A, Spinks Geoffrey M, Gilmore Kerry J, Wallace Gordon G (2007) J Biomed Mater Res B 82:37Google Scholar
  23. 23.
    Astrom JA, Timonen J, Karttunen M (2004) Phys Rev Lett 93:244301CrossRefGoogle Scholar
  24. 24.
    Dettlaff-Weglikowska U, Skakalova V, Graupner R et al (2005) J Am Chem Soc 127:5125CrossRefGoogle Scholar
  25. 25.
    Coleman JN, Blau WJ, Dalton AB et al (2003) Appl Phys Lett 82:1682CrossRefGoogle Scholar
  26. 26.
    Li Y-H, Wei J, Zhang X et al (2002) Chem Phys Lett 365:95CrossRefGoogle Scholar
  27. 27.
    Park JG, Smithyman J, Lin C-Y et al (2009) J Appl Phys 106:104310/1. doi: 10.1063/1.3255901 Google Scholar
  28. 28.
    Li Y, Kroeger M (2012) Appl Phys Lett 100:021907/1. doi: 10.1063/1.3675912 Google Scholar
  29. 29.
    Pham GT, Park Y-B, Wang S et al (2008) Nanotechnology 19:325705/1CrossRefGoogle Scholar
  30. 30.
    Liang Z, Gonnet P, Choi ES et al (2005) SAMPE Conf Proc 50:526Google Scholar
  31. 31.
    Whitten PG, Spinks GM, Wallace GG (2005) Carbon 43:1891CrossRefGoogle Scholar
  32. 32.
    Cha SI, Kim KT, Lee KH, Mo CB, Jeong YJ, Hong SH (2008) Carbon 46:482. doi: 10.1016/j.carbon.2007.12.023 CrossRefGoogle Scholar
  33. 33.
    Baughman RH, Cui C, Zakhidov AA et al (1999) Science 284:1340CrossRefGoogle Scholar
  34. 34.
    Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman R (2004) J Appl Phys 95:4335CrossRefGoogle Scholar
  35. 35.
    Dettlaff-weglikowska U, Skakalova V, Graupner R, Ley L, Roth S (2003) Mater Res Soc Symp Proc 772:179Google Scholar
  36. 36.
    Zhang X, Sreekumar TV, Liu T, Kumar S (2004) J Phys Chem B 108:16435CrossRefGoogle Scholar
  37. 37.
    Talmon Y (1999) Surfactant Sci Ser 83:147Google Scholar
  38. 38.
    Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R (2004) Langmuir 20:6085CrossRefGoogle Scholar
  39. 39.
    Moore VC, Strano MS, Haroz EH et al (2003) Nano Lett 3:1379. doi: 10.1021/nl034524j CrossRefGoogle Scholar
  40. 40.
    Parra-Vasquez ANG, Behabtu N, Green MJ et al (2010) ACS Nano 4:3969. doi: 10.1021/nn100864v CrossRefGoogle Scholar
  41. 41.
    Granite M, Radulescu A, Pyckhout-Hintzen W, Cohen Y (2011) Langmuir 27:751. doi: 10.1021/la103096n CrossRefGoogle Scholar
  42. 42.
    Edri E, Regev O (2010) Ultramicroscopy 110:751. doi: 10.1016/j.ultramic.2010.03.010 CrossRefGoogle Scholar
  43. 43.
    Green MJ (2010) Polym Int 59:1319. doi: 10.1002/pi.2878 CrossRefGoogle Scholar
  44. 44.
    Zelikman E, Narkis M, Siegmann A, Valentini L, Kenny JM (2008) Polym Eng Sci 48:1872CrossRefGoogle Scholar
  45. 45.
    Artukovic E, Kaempgen M, Hecht DS, Roth S, Gruener G (2005) Nano Lett 5:757CrossRefGoogle Scholar
  46. 46.
    Bekyarova E, Itkis ME, Cabrera N et al (2005) J Am Chem Soc 127:5990CrossRefGoogle Scholar
  47. 47.
    Itkis Mikhail E, Borondics F, Yu A, Haddon Robert C (2006) Science 312:413CrossRefGoogle Scholar
  48. 48.
    Liu P, He G, Wu L (2009) Mater Sci Eng A A509:69Google Scholar
  49. 49.
    Bom D, Andrews R, Jacques D et al (2002) Nano Lett 2:615CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • G. Mechrez
    • 1
  • R. Y. Suckeveriene
    • 1
  • R. Tchoudakov
    • 1
  • A. Kigly
    • 1
  • E. Segal
    • 2
  • M. Narkis
    • 1
  1. 1.Department of Chemical EngineeringTechnion, IITHaifaIsrael
  2. 2.Department of Biotechnology and Food EngineeringTechnion, IITHaifaIsrael

Personalised recommendations