Journal of Materials Science

, Volume 47, Issue 16, pp 6131–6140 | Cite as

Structure and properties of multi-walled carbon nanotube porous sheets with enhanced elongation

  • G. Mechrez
  • R. Y. Suckeveriene
  • R. Tchoudakov
  • A. Kigly
  • E. Segal
  • M. Narkis


In this article, multi-walled carbon nanotubes (MWNTs)/dodecyl benzene sulfonic acid (DBSA) porous sheet networks (PSNs) of enhanced extensibility were developed and characterized. The MWNT/DBSA networks possess failure strains of 8–12 %, markedly higher than the literature reported values of 0.5–4 %. The networks were prepared through micro-filtration of highly dispersed MWNT in DBSA aqueous solutions. The DBSA molecule has two functions: In the dispersion stage, DBSA functions as a dispersant leading to the establishment of stable individually dispersed MWNT, and in the MWNT porous sheet, the presence of DBSA within the nanotubes’ network creates a lubrication-like effect, enhancing the networks’ extensibility. In fact, it was found that DBSA is assembled in two modes within the nanotubes’ network: a fraction which is strongly adsorbed onto the CNT surface, and another fraction entrapped within the network as a DBSA/water solution. It should be noted that the composition of these systems is stable under ambient room temperature conditions. Comparison of MWNT networks prepared from the MWNT/DBSA dispersions and from the same but coagulated before filtration has shown superiority of the non-coagulated systems in relation to structure and mechanical properties. The prepared MWNT/DBSA PSNs of enhanced extensibility were developed without any modification by polymers, and they are characterized by high electrical conductivity and nano-porosity.


  1. 1.
    Iijima S (1991) Nature (London) 354:56CrossRefGoogle Scholar
  2. 2.
    M Meyyappan (ed) (2005) Carbon nanotubes: science and applicationsGoogle Scholar
  3. 3.
    Breuer O, Sundararaj U (2004) Polym Compos 25:630. doi:10.1002/pc.20058 CrossRefGoogle Scholar
  4. 4.
    Fortunati E, D’Angelo F, Martino S, Orlacchio A, Kenny JM, Armentano I (2011) Carbon 49:2370. doi:10.1016/j.carbon.2011.02.004 CrossRefGoogle Scholar
  5. 5.
    Suckeveriene RY, Zelikman E, Mechrez G et al (2011) J Appl Polym Sci 120:676. doi:10.1002/app.33212 CrossRefGoogle Scholar
  6. 6.
    Kumar S, Rath T, Mahaling RN, Mukherjee M, Khatua BB, Das CK (2009) J Nanosci Nanotechnol 9:2981. doi:10.1166/jnn.2009.012 CrossRefGoogle Scholar
  7. 7.
    CJ Frizzell, M in het Panhuis, DH Coutinho et al. (2005) Phys Rev B 72:245420–245421Google Scholar
  8. 8.
    Kim MH, Choi J-Y, Choi HK et al (2008) Adv Mater 20:457CrossRefGoogle Scholar
  9. 9.
    Kim YA, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS (2006) Chem Vap Deposition 12:327CrossRefGoogle Scholar
  10. 10.
    Lee BY, Heo K, Bak JH et al (2008) Nano Lett 8:4483CrossRefGoogle Scholar
  11. 11.
    Meng C, Liu C, Fan S (2010) Adv Mater (Weinheim, Ger) 22:535CrossRefGoogle Scholar
  12. 12.
    Wang D, Song P, Liu C, Wu W, Fan S (2008) Nanotechnology 19:075609/1Google Scholar
  13. 13.
    Zschoerper NP, Katzenmaier V, Vohrer U, Haupt M, Oehr C, Hirth T (2009) Carbon 47:2174CrossRefGoogle Scholar
  14. 14.
    Liu L, Ma W, Zhang Z (2011) Small 7:1504. doi:10.1002/smll.201002198 CrossRefGoogle Scholar
  15. 15.
    Chen IWP, Liang Z, Wang B, Zhang C (2010) Carbon 48:1064CrossRefGoogle Scholar
  16. 16.
    Cooper SM, Chuang HF, Cinke M, Cruden BA, Meyyappan M (2003) Nano Lett 3:189CrossRefGoogle Scholar
  17. 17.
    X Fu, C Zhang, T Liu, R Liang, B Wang (2010) Nanotechnology 21:235701Google Scholar
  18. 18.
    Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Science 303:62CrossRefGoogle Scholar
  19. 19.
    Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) Smart Mater Struct 15:737CrossRefGoogle Scholar
  20. 20.
    Pacios M, del Valle M, Bartroli J, Esplandiu MJ (2008) J Electroanal Chem 619–620:117Google Scholar
  21. 21.
    Park JG, Louis J, Cheng Q et al (2009) Nanotechnology 20:415702/1Google Scholar
  22. 22.
    Whitten Philip G, Gestos Adrian A, Spinks Geoffrey M, Gilmore Kerry J, Wallace Gordon G (2007) J Biomed Mater Res B 82:37Google Scholar
  23. 23.
    Astrom JA, Timonen J, Karttunen M (2004) Phys Rev Lett 93:244301CrossRefGoogle Scholar
  24. 24.
    Dettlaff-Weglikowska U, Skakalova V, Graupner R et al (2005) J Am Chem Soc 127:5125CrossRefGoogle Scholar
  25. 25.
    Coleman JN, Blau WJ, Dalton AB et al (2003) Appl Phys Lett 82:1682CrossRefGoogle Scholar
  26. 26.
    Li Y-H, Wei J, Zhang X et al (2002) Chem Phys Lett 365:95CrossRefGoogle Scholar
  27. 27.
    Park JG, Smithyman J, Lin C-Y et al (2009) J Appl Phys 106:104310/1. doi:10.1063/1.3255901 Google Scholar
  28. 28.
    Li Y, Kroeger M (2012) Appl Phys Lett 100:021907/1. doi:10.1063/1.3675912 Google Scholar
  29. 29.
    Pham GT, Park Y-B, Wang S et al (2008) Nanotechnology 19:325705/1CrossRefGoogle Scholar
  30. 30.
    Liang Z, Gonnet P, Choi ES et al (2005) SAMPE Conf Proc 50:526Google Scholar
  31. 31.
    Whitten PG, Spinks GM, Wallace GG (2005) Carbon 43:1891CrossRefGoogle Scholar
  32. 32.
    Cha SI, Kim KT, Lee KH, Mo CB, Jeong YJ, Hong SH (2008) Carbon 46:482. doi:10.1016/j.carbon.2007.12.023 CrossRefGoogle Scholar
  33. 33.
    Baughman RH, Cui C, Zakhidov AA et al (1999) Science 284:1340CrossRefGoogle Scholar
  34. 34.
    Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman R (2004) J Appl Phys 95:4335CrossRefGoogle Scholar
  35. 35.
    Dettlaff-weglikowska U, Skakalova V, Graupner R, Ley L, Roth S (2003) Mater Res Soc Symp Proc 772:179Google Scholar
  36. 36.
    Zhang X, Sreekumar TV, Liu T, Kumar S (2004) J Phys Chem B 108:16435CrossRefGoogle Scholar
  37. 37.
    Talmon Y (1999) Surfactant Sci Ser 83:147Google Scholar
  38. 38.
    Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R (2004) Langmuir 20:6085CrossRefGoogle Scholar
  39. 39.
    Moore VC, Strano MS, Haroz EH et al (2003) Nano Lett 3:1379. doi:10.1021/nl034524j CrossRefGoogle Scholar
  40. 40.
    Parra-Vasquez ANG, Behabtu N, Green MJ et al (2010) ACS Nano 4:3969. doi:10.1021/nn100864v CrossRefGoogle Scholar
  41. 41.
    Granite M, Radulescu A, Pyckhout-Hintzen W, Cohen Y (2011) Langmuir 27:751. doi:10.1021/la103096n CrossRefGoogle Scholar
  42. 42.
    Edri E, Regev O (2010) Ultramicroscopy 110:751. doi:10.1016/j.ultramic.2010.03.010 CrossRefGoogle Scholar
  43. 43.
    Green MJ (2010) Polym Int 59:1319. doi:10.1002/pi.2878 CrossRefGoogle Scholar
  44. 44.
    Zelikman E, Narkis M, Siegmann A, Valentini L, Kenny JM (2008) Polym Eng Sci 48:1872CrossRefGoogle Scholar
  45. 45.
    Artukovic E, Kaempgen M, Hecht DS, Roth S, Gruener G (2005) Nano Lett 5:757CrossRefGoogle Scholar
  46. 46.
    Bekyarova E, Itkis ME, Cabrera N et al (2005) J Am Chem Soc 127:5990CrossRefGoogle Scholar
  47. 47.
    Itkis Mikhail E, Borondics F, Yu A, Haddon Robert C (2006) Science 312:413CrossRefGoogle Scholar
  48. 48.
    Liu P, He G, Wu L (2009) Mater Sci Eng A A509:69Google Scholar
  49. 49.
    Bom D, Andrews R, Jacques D et al (2002) Nano Lett 2:615CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • G. Mechrez
    • 1
  • R. Y. Suckeveriene
    • 1
  • R. Tchoudakov
    • 1
  • A. Kigly
    • 1
  • E. Segal
    • 2
  • M. Narkis
    • 1
  1. 1.Department of Chemical EngineeringTechnion, IITHaifaIsrael
  2. 2.Department of Biotechnology and Food EngineeringTechnion, IITHaifaIsrael

Personalised recommendations