Journal of Materials Science

, Volume 47, Issue 16, pp 5970–5977 | Cite as

Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3

  • Yong-Hun Cho
  • Jeff Wolfenstine
  • Ezhiylmurugan Rangasamy
  • Hyunjoong Kim
  • Heeman Choe
  • Jeff Sakamoto


Li0.33La0.57TiO3 (LLTO) is a potential Li-ion conducting membrane for use in aqueous Li-air batteries. To be in this configuration its mechanical properties must be determined. Dense LLTO was prepared using a solid-state (SS) or sol–gel (SG) procedure and was hot-pressed to yield a high relative density material (>95 %). Young’s modulus, hardness, and fracture toughness of the LLTO-SS and sol–gel LLTO-SG materials was determined and compared to other solid Li-ion conducting electrolytes. The Young’s modulus for LLTO-SG and LLTO-SS was 186 ± 4 and 200 ± 3 GPa, respectively. The Vickers hardness of LLTO-SG and LLTO-SS was 9.7 ± 0.7 and 9.2 ± 0.2 GPa, respectively. The fracture toughness, K IC, of both LLTO-SG and LLTO-SS was ~1 MPa m1/2; the fracture toughness of LLTO-SG was slightly higher than that of LLTO-SS. Both LLTO-SG and LLTO-SS have a Young’s modulus and hardness greater than the other possible solid Li-ion conducting membranes; Li7La3Zr2O12 and Li1+x+y Al x Ti2−x Si y P3−y O12. Based on modulus and hardness hot-pressed LLTO exhibits sufficient mechanical integrity to be used as a solid Li-ion conducting membrane in aqueous Li-air batteries but, its fracture toughness needs to be improved without degrading its ionic conductivity.


Fracture Toughness Relative Density High Fracture Toughness Rockwell Hardness Lanthanum Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2009-0093814) and the National Research Foundation of Korea Grant (KRF-2008-313-D00012). JW would like to acknowledge the support of the U.S. Army Research Laboratory (ARL). Authors JS, ER and HK would like to acknowledge support from the Army Research Office (ARO).


  1. 1.
    Dunn B, Kamath H, Tarascon J-M (2011) Science 334:928CrossRefGoogle Scholar
  2. 2.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Nature Mater 11:19Google Scholar
  3. 3.
    Knauth P (2009) Solid State Ionics 180:911CrossRefGoogle Scholar
  4. 4.
    Wolfenstine J, Allen JL (2008) J Mater Sci 43:7247. doi: 10.1007/s10853-008-3048-5 CrossRefGoogle Scholar
  5. 5.
    Thangadurai V, Weppner W (2006) Solid State Ionics 12:81Google Scholar
  6. 6.
    Inaguma Y, Chen LQ, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) Solid State Commun 86:689CrossRefGoogle Scholar
  7. 7.
    Bohnke O (2008) Solid State Ionics 179:9CrossRefGoogle Scholar
  8. 8.
    Ban CW, Choi GM (2001) Solid State Ionics 140:285CrossRefGoogle Scholar
  9. 9.
    Brike P, Salam F, Döring S, Weppner W (1999) Solid State Ionics 118:149CrossRefGoogle Scholar
  10. 10.
    Viswanathan L, Virkar A (1983) J Am Ceram Soc 66:159CrossRefGoogle Scholar
  11. 11.
    Viswanathan L, Ikuma Y, Virkar A (1983) J Mater Sci 18:109. doi: 10.1007/BF00543815 CrossRefGoogle Scholar
  12. 12.
    Inaguma Y, Chen LQ, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) Solid State Commun 86:689CrossRefGoogle Scholar
  13. 13.
    Kawai H, Kuwano J (1994) J Electrochem Soc 141:L74CrossRefGoogle Scholar
  14. 14.
    Yang KT, Wang JW, Fung KZ (2008) J Alloys Compd 458:415CrossRefGoogle Scholar
  15. 15.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  16. 16.
    Oliver WC, Pharr GM (2004) J Mater Res 19:3CrossRefGoogle Scholar
  17. 17.
    Yeheskel O, Albayrak IC, Anasori B, Barsoum MW (2011) J Eur Ceram Soc 31:1703CrossRefGoogle Scholar
  18. 18.
    Evans AG, Charles EA (1976) J Am Ceram Soc 59:371CrossRefGoogle Scholar
  19. 19.
    Laugier M (1985) J Mater Sci Lett 4:1539CrossRefGoogle Scholar
  20. 20.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533CrossRefGoogle Scholar
  21. 21.
    Miyoshi T (1985) J Jpn Soc Mech 51:2489Google Scholar
  22. 22.
    Ramachandran N, Shetty DK (1991) J Am Ceram Soc 74:2634CrossRefGoogle Scholar
  23. 23.
    Niihara K, Morena R, Hasselman DPH (1982) J Mater Sci Lett 1:13CrossRefGoogle Scholar
  24. 24.
    Lankford J (1982) J Mater Sci Lett 1:493CrossRefGoogle Scholar
  25. 25.
    Hutchinson JW (1989) In: Germain P, Piau M, Caillerie D (eds) Theoretical and applied mechanics. Elsevier, Amsterdam, pp 139–144Google Scholar
  26. 26.
    Launey ME, Ritchie RO (2009) Adv Mater 21:2103CrossRefGoogle Scholar
  27. 27.
    Barsoum MV (1997) Fundamentals of ceramics. The McGraw-Hill Companies, Inc., New YorkGoogle Scholar
  28. 28.
    Kuriyama K, Saito S, Iwamura K (1979) J Phys Chem Solids 40:457CrossRefGoogle Scholar
  29. 29.
    Kovacik J (1999) J Mater Sci Lett 18:1007CrossRefGoogle Scholar
  30. 30.
    Kim HS, Bush MB (1999) Nanostruct Mater 11:361CrossRefGoogle Scholar
  31. 31.
    Dole SL, Hunter O, Wooge CJ (1977) J Am Ceram Soc 60:488CrossRefGoogle Scholar
  32. 32.
    Yamai I, Ota T (1993) J Am Ceram Soc 76:487CrossRefGoogle Scholar
  33. 33.
    Spriggs RM (1962) J Am Ceram Soc 45:454CrossRefGoogle Scholar
  34. 34.
    Chaim R, Hefetz M (2004) J Mater Sci 39:3057. doi: 10.1023/B:JMSC.0000025832.93840.b0 CrossRefGoogle Scholar
  35. 35.
    Fryxell RE, Chandler BA (1964) J Am Ceram Soc 47:283CrossRefGoogle Scholar
  36. 36.
    Shimonishi H, Toda A, Zhang T, Hirano A, Imanishi N, Yamamoto N, Takeda Y (2011) Solid State Ionics 183:48CrossRefGoogle Scholar
  37. 37.
    Kumazaki S, Iriyama Y, Kim KH, Murugan R, Tanabe K, Yammato K, Hirayama T, Ogumi Z (2011) Electrochem Commun 13:509CrossRefGoogle Scholar
  38. 38.
    Murugan R, Thangaduri V, Weppner W (2007) Angew Chem Int Ed 46:7778CrossRefGoogle Scholar
  39. 39.
    Rangasamy E, Wolfenstine J, Sakamoto J (2012) Solid State Ionics 206:28CrossRefGoogle Scholar
  40. 40.
    Ni JE, Case ED, Sakamoto J, Ranagasamy E, Wolfenstine (2012) J Mater Sci (submitted)Google Scholar
  41. 41.
    Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New YorkGoogle Scholar
  42. 42.
    Wolfenstine J, Allen JL, Read J, Sakamoto J, Gonalez-Doncel G (2010) J Power Sources 195:4124CrossRefGoogle Scholar
  43. 43.
    Chiang YM, Birnie D, Kingery WD (1979) Physical ceramics. Wiley, New YorkGoogle Scholar
  44. 44.
    Gilman JJ (1960) Aust J Phys 13:327CrossRefGoogle Scholar
  45. 45.
    Chin GY, Wernick JH, Geballe TG, Mahajan S, Nakahara S (1978) J Appl Phys 33:103Google Scholar
  46. 46.
    Barrett CR, Nix WD, Tetelman AS (1973) The principles of engineering materials. Prentice-Hall, Inc., Englewood Cliffs, NJGoogle Scholar
  47. 47.
    Gilman JJ (2009) Chemistry and physics of mechanical hardness. Wiley, New YorkCrossRefGoogle Scholar
  48. 48.
    Faber KT, Evans AG (1983) Acta Metall 4:565Google Scholar
  49. 49.
    Faber KT, Evans AG (1983) Acta Metall 4:577Google Scholar
  50. 50.
    Bower AF, Otitz M (1993) J Eng Mater Technol 115:229CrossRefGoogle Scholar
  51. 51.
    Rice RW (1996) J Mater Sci 31:1969. doi: 10.1007/BF00356616 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yong-Hun Cho
    • 1
  • Jeff Wolfenstine
    • 2
  • Ezhiylmurugan Rangasamy
    • 3
  • Hyunjoong Kim
    • 3
  • Heeman Choe
    • 1
  • Jeff Sakamoto
    • 3
  1. 1.School of Advanced Materials EngineeringKookmin UniversitySeoulRepublic of Korea
  2. 2.Army Research LaboratoryAdelphiUSA
  3. 3.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations