Journal of Materials Science

, Volume 47, Issue 21, pp 7522–7529 | Cite as

Electron trapping at the lattice Ti atoms adjacent to the Nb dopant in Nb-doped rutile TiO2

First Principles Computations

Abstract

The Nb-doped anatase TiO2 is considered one of the most promising alternative transparent conducting oxides to substitute for indium tin oxide. However, studies have found that the conductivity emerges only in the anatase form, not in the rutile form. We applied the first-principle band structure method for the Nb-doped TiO2 in both polymorphs. The calculation was carried out using the spin-restricted and spin-polarized GGA+U level of the theory. Special care was taken in the calibration of +U parameters to satisfy the generalized Koopman’s theorem. A significant difference was found between the spin-polarized and spin-restricted calculations. We noticed that spin polarization was necessary to reproduce the electron trapping in rutile. In addition, electrons are trapped at two lattice Ti atoms adjacent to the NbTi dopant along the [001] direction, as described with the formal charge state of Ti3.5+–Nb5+–Ti3.5+. A careful convergence of the electron trapping character was conducted against the unit cell size based on the Bader population analysis.

References

  1. 1.
    Kamisaka H, Yamashita K (2009) In: Vayssieres L (ed) On solar hydrogen & nanotechnology. Wiley, Singapore, p 37Google Scholar
  2. 2.
    Facchetti A, Marks T (eds) (2010) Transparent electronics: from synthesis to applications. Wiley, West SussexGoogle Scholar
  3. 3.
    Hosono H, Paine DC, Ginley DS (eds) (2010) Handbook of transparent conductors. Springer, New YorkGoogle Scholar
  4. 4.
    Hamberg I, Granqvist CG (1986) J Appl Phys 60:R123CrossRefGoogle Scholar
  5. 5.
    Taylor SR, McLennan SM (1995) Rev Geophys 33:241CrossRefGoogle Scholar
  6. 6.
    Tsuda N, Nasu K, Fujimori A, Siratori K (1993) Electronic conduction in oxides, 2nd edn. Shokabo, TokyoGoogle Scholar
  7. 7.
    Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H (2001) Science 291:854CrossRefGoogle Scholar
  8. 8.
    Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T (2005) Appl Phys Lett 86:252101CrossRefGoogle Scholar
  9. 9.
    Furubayashi Y, Hitosugi T, Hasegawa T (2006) Appl Phys Lett 88:226103CrossRefGoogle Scholar
  10. 10.
    Hitosugi T, Ueda A, Nakao S, Yamada N, Furubayashi Y, Hirose Y, Shimada T, Hasegawa T (2007) Appl Phys Lett 90:212106CrossRefGoogle Scholar
  11. 11.
    Hirose Y, Yamada N, Nakao S, Hitosugi T, Shimada T, Hasegawa T (2009) Phys Rev B 79:165108CrossRefGoogle Scholar
  12. 12.
    Weijtens CHL, Van Loon PAC (1991) Thin Solid Films 196:1CrossRefGoogle Scholar
  13. 13.
    Brewer SH, Franzen S (2004) Chem Phys 300:285CrossRefGoogle Scholar
  14. 14.
    Ederth J, Hultåker A, Nikalasson GA, Heszler P, Van Doorn AR, Jongerius MJ, Burgard D, Granqvist CG (2005) Appl Phys A 81:1363CrossRefGoogle Scholar
  15. 15.
    Ellmer K, Mientus R (2008) Thin Solid Films 516:4620CrossRefGoogle Scholar
  16. 16.
    Tuna O, Selamet Y, Aygun G, Ozyuzer L (2010) J Phys D 43:055402CrossRefGoogle Scholar
  17. 17.
    Furubayashi Y, Yamada N, Hirose Y, Yamamoto Y, Otani M, Hitosugi T, Shimada T, Hasegawa T (2007) J Appl Phys 101:093705CrossRefGoogle Scholar
  18. 18.
    Yamada N, Hitosugi T, Kasai J, Hoang NLH, Nakao S, Hirose Y, Shimada T, Hasegawa T (2009) J Appl Phys 105:123702CrossRefGoogle Scholar
  19. 19.
    Yamada N, Hitosugi T, Kasai J, Hoang NLH, Nakao S, Hirose Y, Shimada T, Hasegawa T (2010) Thin Solid Films 518:3101CrossRefGoogle Scholar
  20. 20.
    Bellingham JR, Phillips WA, Adkins CJ (1992) J Mater Sci Lett 11:263.CrossRefGoogle Scholar
  21. 21.
    Mergel D, Qiao Z (2004) J Appl Phys 95:5608CrossRefGoogle Scholar
  22. 22.
    Kamisaka H, Hitosugi T, Yamashita K (2010) J Surf Sci Soc Jpn 31:343CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Zunger A (1981) Phys Rev B 23:5048CrossRefGoogle Scholar
  24. 24.
    Deskins NA, Dupuis M (2007) Phys Rev B 75:195212CrossRefGoogle Scholar
  25. 25.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  26. 26.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  27. 27.
    Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207CrossRefGoogle Scholar
  28. 28.
    Batista ER, Heyd J, Hennig RG, Uberuaga BP, Martin RL, Scuseria GE, Umrigar CJ, Wilkins JW (2006) Phys Rev B 74:121102CrossRefGoogle Scholar
  29. 29.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  30. 30.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  31. 31.
    Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943CrossRefGoogle Scholar
  32. 32.
    Hamada H (2004) Kotai Butsuri 39:743Google Scholar
  33. 33.
    Di Valentin C, Pacchioni G, Selloni A (2009) J Phys Chem C 113:20543CrossRefGoogle Scholar
  34. 34.
    Cococcioni M, de Gironcoli S (2005) Phys Rev B 71:035105CrossRefGoogle Scholar
  35. 35.
    Janotti A, Segev D, Van de Walle CG (2006) Phys Rev B 74:045202CrossRefGoogle Scholar
  36. 36.
    Morgan BJ, Watson GW (2009) Phys Rev B 80:233102CrossRefGoogle Scholar
  37. 37.
    Park S-G, Magyari-Köpe B, Nishi Y (2010) Phys Rev B 82:115109CrossRefGoogle Scholar
  38. 38.
    Janotti A, Varley JB, Rinke P, Umezawa N, Kresse G, Van de Walle CG (2010) Phys Rev B 81:085212CrossRefGoogle Scholar
  39. 39.
    Mattioli G, Filippone F, Alippi P, Bonapasta AA (2008) Phys Rev B 78:241201CrossRefGoogle Scholar
  40. 40.
    Stausholm-Møller J, Kristoffersen HH, Hinnemann B, Madsen GKH, Hammer B (2010) J Chem Phys 133:144708CrossRefGoogle Scholar
  41. 41.
    Osorio-Guillén J, Lany S, Zunger A (2008) Phys Rev Lett 100:036601CrossRefGoogle Scholar
  42. 42.
    Morgan BJ, Scanlon DO, Watson GW (2009) J Mater Chem 19:5175CrossRefGoogle Scholar
  43. 43.
    Orita N (2010) Jpn J Appl Phys 49:055801CrossRefGoogle Scholar
  44. 44.
    Huy HA, Aradi B, Frauenheim T, Deák P (2011) Phys Rev B 83:155201CrossRefGoogle Scholar
  45. 45.
    Orita N (2011) Jpn J Appl Phys 50:041102CrossRefGoogle Scholar
  46. 46.
    Deák P, Aradi B, Frauenheim T (2011) Phys Rev B 83:155207CrossRefGoogle Scholar
  47. 47.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  48. 48.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  49. 49.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  50. 50.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  51. 51.
    Lany S (2011) In: Alkauskas A, Deák P, Neugebauer J, Pasquarello A, Van de Walle CG (eds) Advanced calculations for defects in materials. Wiley-VCH, Weinheim, p 183CrossRefGoogle Scholar
  52. 52.
    Ihm J, Zunger A, Cohen ML (1979) J Phys C 12:4409CrossRefGoogle Scholar
  53. 53.
    Laks DB, Van de Walle CG, Neumark GF, Blöchl PE, Pantelides ST (1992) Phys Rev B 45:10965CrossRefGoogle Scholar
  54. 54.
    Persson C, Zhao Y-J, Lany S, Zunger A (2005) Phys Rev B 72:035211CrossRefGoogle Scholar
  55. 55.
    Lany S, Zunger A (2008) Phys Rev B 78:235104CrossRefGoogle Scholar
  56. 56.
    Kamisaka H, Yamashita K (2011) J Phys Chem C 115:8265CrossRefGoogle Scholar
  57. 57.
    Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354CrossRefGoogle Scholar
  58. 58.
    Kresse G, Hafner J (1993) Phys Rev B 47:RC558CrossRefGoogle Scholar
  59. 59.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  60. 60.
    Momma K, Izumi F (2008) J Appl Crystallogr 41:653CrossRefGoogle Scholar
  61. 61.
    Shriver DF, Atkins PW, Langford CH (1990) Inorganic chemistry. Oxford University Press, OxfordGoogle Scholar
  62. 62.
    Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) J Phys Chem B 109:11414CrossRefGoogle Scholar
  63. 63.
    Lindan PJD, Harrison NM, Gillan MJ, White JA (1997) Phys Rev B 55:15919CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical System Engineering, School of EngineeringThe University of TokyoTokyoJapan
  2. 2.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations