Advertisement

Journal of Materials Science

, Volume 47, Issue 15, pp 5794–5800 | Cite as

Linear optical susceptibilities of the oxoborate (Pb3O)2(BO3)2WO4: theory and experiment

  • Ali Hussain Reshak
  • Xuean Chen
  • S. Auluck
  • H. Kamarudin
Article

Abstract

The optical susceptibilities have been investigated experimentally and theoretically for a newly synthesized oxoborate, (Pb3O)2(BO3)2WO4. The crystal structure is composed of one-dimensional \( {}_{\infty }^{1} \left[ {{\text{Pb}}_{ 3} {\text{O}}} \right]^{ 4+ } \) chains formed by corner-sharing OPb4 tetrahedra. BO3 and WO4 groups are located around the chains to hold them together via Pb–O bonds. The solid-state fluorescence spectrum exhibited a maximum emission peak at around 375.2 nm with excitation light of 280 nm. UV–Vis diffuse reflectance spectra showed a band gap of about 2.9 eV which compares well with our theoretical band gap of about 2.3 eV obtained using the local density approximation and 2.6 eV using the Engel–Vosko’s generalized gradient approximation. We have optimized the atomic positions starting from our X-ray diffraction data so as to minimize the forces on each atom. A remarkable finding is that this crystal possesses a weak anisotropy among three components of the frequency-dependent dielectric function and a small positive birefringence. This indicates that the oxoborate, (Pb3O)2(BO3)2WO4, cannot be used to produce second harmonic generation (SHG) and optical parametric oscillation.

Keywords

Second Harmonic Generation Local Density Approximation Optical Parametric Oscillation CaWO4 Weak Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

For Ali H. Reshak, this study was supported under the program RDI of the Czech Republic, the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the Grant no. 152/2010/Z of the Grant Agency of the University of South Bohemia. School of Material Engineering, Malaysia University of Perlis, P.O. Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis, Malaysia. For X. Chen, the study was supported under the National Natural Science Foundation of China (Grant no. 20871012). SA would like to thank the National Physical Laboratory for the award of the J C Bose Fellowship.

References

  1. 1.
    Martynyuk-Lototska I, Dudok T, Mys O, Vlokh R (2009) Opt Mater 31:660CrossRefGoogle Scholar
  2. 2.
    Park H, Lam R, Greedan JE, Barbier J (2003) Chem Mater 15:1703CrossRefGoogle Scholar
  3. 3.
    Park H-S, Barbier J, Hammond RP (2003) Solid State Sci 5:565CrossRefGoogle Scholar
  4. 4.
    Park H, Barbier J (2001) Acta Crystallogr E 57:82CrossRefGoogle Scholar
  5. 5.
    Chen X, Zuo J, Chang X, Zhao Y, Zang H, Xiao W (2006) J Solid State Chem 179:3191CrossRefGoogle Scholar
  6. 6.
    Pan S-L, Smit JP, Marvel MR, Stern CL, Watkins B, Poeppelmeier KR (2006) Mater Res Bull 41:916CrossRefGoogle Scholar
  7. 7.
    Chen X-A, Zhao Y-H, Chang X-A, Zhang L, Xue HP (2006) Acta Crystallogr C 62:i11CrossRefGoogle Scholar
  8. 8.
    Chen X, Song F, Chang X, Zang H, Xiao W (2009) J Solid State Chem 182:3091CrossRefGoogle Scholar
  9. 9.
    Li J, Pan S, Zhao W, Tian X, Han J, Fan X (2011) Solid State Sci 13:966CrossRefGoogle Scholar
  10. 10.
    Ebothe J, Kityk IV, Kisilewski J, Lukasiewicz T, Diduszko R, Majchrowski A (2006) Appl Phys Lett 89:131106CrossRefGoogle Scholar
  11. 11.
    Wojciechowski A, Ozga K, Majchrowski A, Brik MG, Swirkowicz M, Slezak A, Kityk IV (2010) J Modern Optics 57:657CrossRefGoogle Scholar
  12. 12.
    Sheldrick GM (1997) SHELX-97: program for structure refinement. University of Goettingen, GoettingenGoogle Scholar
  13. 13.
    Reshak AH, Chen X, Auluck S, Kamarudin H (private communication)Google Scholar
  14. 14.
    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2K, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz Techn Universitat, Wien, Austria. ISBN 3-9501031-1-2Google Scholar
  15. 15.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864CrossRefGoogle Scholar
  16. 16.
    Ceperley DM, Ader BI (1980) Phys Rev Lett 45:566CrossRefGoogle Scholar
  17. 17.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefGoogle Scholar
  18. 18.
    Engel E, Vosko SH (1993) Phys Rev B 47:13164CrossRefGoogle Scholar
  19. 19.
    Rashkeev SN, Lambrecht WRL (2001) Phys Rev B 63:165212CrossRefGoogle Scholar
  20. 20.
    Rashkeev SN, Lambrecht WRL (2000) Appl Phys Lett 77:190CrossRefGoogle Scholar
  21. 21.
    Thongtem T, Phuruangrat A, Thongtem S (2008) Appl Surf Sci 254:7581CrossRefGoogle Scholar
  22. 22.
    Bassani F, Parravicini GP (1975) Electronic states and optical transitions in solids. Pergamon Press Ltd., Oxford, p 149Google Scholar
  23. 23.
    Wooten F (1972) Optical properties of solids. Academic Press, New YorkGoogle Scholar
  24. 24.
    Reshak AH (2005) Ph.D. thesis, Indian Institute of Technology-Roorkee, IndiaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ali Hussain Reshak
    • 1
    • 2
  • Xuean Chen
    • 3
  • S. Auluck
    • 4
  • H. Kamarudin
    • 2
  1. 1.School of Complex SystemsFFWP-South Bohemia UniversityNove HradyCzech Republic
  2. 2.School of Material EngineeringMalaysia University of PerlisKangar, PerlisMalaysia
  3. 3.College of Materials Science and EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China
  4. 4.National Physical Laboratory Dr. K S Krishnan MargNew DelhiIndia

Personalised recommendations