Journal of Materials Science

, Volume 47, Issue 15, pp 5784–5793

Phase transformations and segregation in Fe–Ni alloys and nanoalloys

Article

Abstract

Ordering and segregation properties of Fe–Ni alloys and nanoalloys are investigated by means of Metropolis Monte Carlo (MMC) and molecular dynamics (MD) simulations. The model is based on an embedded atom potential which, according to thermodynamic integration, only stabilizes those phases that are observed experimentally. This stability is confirmed by MMC and the same phases are found stable in truncated octahedral nanoparticles containing no more than 201 atoms. At given composition, Ni segregates at {100} and nanoparticle surfaces on the Fe-rich side of the phase diagram, Fe segregates at intermediate compositions and no significant trend is predicted on the Ni-rich side. A BCC to L10 transition is observed to occur at a Ni fraction close to 0.32, both in bulk alloys and in nanoparticles. The transition gives rise to a change in the nanoparticle aspect ratio by a factor 21/2. Using MD, by varying temperature, it was possible to monitor a BCC to FCC transition in solid solution nanoparticles reversibly.

References

  1. 1.
    Wackerie T (2010) Magn IEEE Trans 46:326CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Howald RA (2003) Metal Mater Trans 34A:1759CrossRefGoogle Scholar
  4. 4.
    Cacciami G, De Keyzer J, Ferro R, Klotz UE, Lacaze J, Wollants P (2006) Intermetallics 14:1312CrossRefGoogle Scholar
  5. 5.
    Michin Y, Mehl MJ, Papaconstantopoulos DA (2005) Acta Mater 53:4029CrossRefGoogle Scholar
  6. 6.
    Acet M, Schneider T, Wasserman EF (1995) J Phys IV 5:C2–C105Google Scholar
  7. 7.
    Kadau K, Griener M, Entl P, Kreth M (2003) Phase Trans 76:355CrossRefGoogle Scholar
  8. 8.
    Krauss G (1999) Mater Sci Eng A273–275:40Google Scholar
  9. 9.
    Cayron C, Barcelo F, de Carlan Y (2010) Acta Mater 58:1395CrossRefGoogle Scholar
  10. 10.
    Battacharya K, Conti S, Zanzotto G, Zimmer J (2004) Nature 58:1395Google Scholar
  11. 11.
    Hornbogen E (1992) Phys Status Solidi 172:161CrossRefGoogle Scholar
  12. 12.
    Zhao X, Lianf Y, Hu Z (1996) Nanostruct Mater 7:313CrossRefGoogle Scholar
  13. 13.
    Lu R, Cao A, Kang F, Wang W, Wei J, Gu J, Wang K, Wu D (2007) J Phys Chem C 111:11475CrossRefGoogle Scholar
  14. 14.
    Zhurkin EE, Hou M (2000) J Phys Condens Matter 12:6735CrossRefGoogle Scholar
  15. 15.
    Bonny G, Pasianot RC, Malerba L (2009) Philos Mag 89:3451CrossRefGoogle Scholar
  16. 16.
    Bonny G, Pasianot RC, Malerba L (2009) Model Simul Mater Sci Eng 17:025010CrossRefGoogle Scholar
  17. 17.
    Mendelev MI, Han A, Srolovitz DJ, Ackland GJ, Sun DY, Asta M (2003) Philos Mag A83:3977CrossRefGoogle Scholar
  18. 18.
    Voter AF, Chen SP (1987) Mater Res Soc Symp Proc 82:175CrossRefGoogle Scholar
  19. 19.
    Howald RA (2003) Metall Mater Trans A34:1759CrossRefGoogle Scholar
  20. 20.
    Rossiter PL, Jago RA (1984) Materials research symposium proceedings. North-Holland, Amsterdam, p 409Google Scholar
  21. 21.
    Rossiter L, Lawrence PJ (1984) Philos Mag A49:535Google Scholar
  22. 22.
    Reuter KB, Williams DB, Goldstein JI (1989) Metall Trans 20:719CrossRefGoogle Scholar
  23. 23.
    Yang CW, Williams DB, Goldstein JI (1997) Geochim Cosmochim Acta 61:2943CrossRefGoogle Scholar
  24. 24.
    Cowley JM (1950) Phys Rev 77:669CrossRefGoogle Scholar
  25. 25.
    Atanasov IS, Hou M (2009) Eur Phys J D52:51Google Scholar
  26. 26.
    Atanasov IS, Hou M (2009) Surf Sci 603:2639CrossRefGoogle Scholar
  27. 27.
    Taylor A (1961) X-ray metallography. Wiley, New York, p 965Google Scholar
  28. 28.
    Roussel JM, Tréglia G, Legrand B (2011) Solid State Phenom 172–174:1008CrossRefGoogle Scholar
  29. 29.
    Hosseini AA, Jones TP (1989) Phys Status Solidi 113:57CrossRefGoogle Scholar
  30. 30.
    Hsiao R, Mauri D (2000) Appl Surf Sci 157:185CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Physique des Solides Irradiés et des Nanostructures CP234Université Libre de BruxellesBrusselsBelgium

Personalised recommendations