Journal of Materials Science

, Volume 47, Issue 15, pp 5729–5734 | Cite as

Thermoelectric properties of Ho-doped Bi0.88Sb0.12

  • K. C. LukasEmail author
  • G. Joshi
  • K. Modic
  • Z. F. Ren
  • C. P. Opeil


The Seebeck coefficients, electrical resistivities, total thermal conductivities, and magnetization are reported for temperatures between 5 and 350 K for n-type Bi0.88Sb0.12 nano-composite alloys made by Ho-doping at the 0, 1, and 3 % atomic levels. The alloys were prepared using a dc hot-pressing method, and are shown to be single phase for both Ho contents with grain sizes on the average of 900 nm. We find the parent compound has a maximum of ZT = 0.28 at 231 K, while doping 1 % Ho increases the maximum ZT to 0.31 at 221 K and the 3 % doped sample suppresses the maximum ZT = 0.24 at a temperature of 260 K.


Carrier Concentration Thermoelectric Property PbTe Seebeck Coefficient Hall Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge M. S. Dresselhaus, J. C. Lashley and P. S. Riseborough for their fruitful discussions and careful reading of the manuscript as well as G. McMahon for his assistance. This study is funded by the Air Force MURI program under contract FA9550-10-1-0533.


  1. 1.
    Smith GE, Wolfe R (1962) J Appl Phys 33:841CrossRefGoogle Scholar
  2. 2.
    Wolfe R, Smith GE (1962) Appl Phys Lett 1:5CrossRefGoogle Scholar
  3. 3.
    Lenoir B, Demouge A, Perrin D, Scherrer H, Scherrer S, Cassart M, Michenaud JP (1995) J Phys Chem Solids 56:99CrossRefGoogle Scholar
  4. 4.
    Yim WM, Amith A (1972) Solid-State Electron 15:1141CrossRefGoogle Scholar
  5. 5.
    Ioffe AF (1957) Semiconductor thermoelements and thermoelectric cooling. Infosearch, LondonGoogle Scholar
  6. 6.
    Gopinathan KK, Goldsmid HJ, Matthews DN, Taylor KNR (1988) In: Proceedings of the 7th International Conference, Thermoelectric Energy Conversion 58Google Scholar
  7. 7.
    Dashevskii ZM, Sidorenko NA, Skipidarov SY, Tsvetkova NA, Mocolov AB (1991) In: Proceedings of the 10th International Conference, Thermoelectric Energy Conversion 142Google Scholar
  8. 8.
    Vedernikov MV, Kuznetsov VL, Ditman AV, Meleks BT, Burkov AT (1991) In: Proceedings of the 10th International Conference, Thermoelectric Energy Conversion 96Google Scholar
  9. 9.
    Fee MG (1993) Appl Phys Lett 62:1161CrossRefGoogle Scholar
  10. 10.
    Jain AL (1959) Phys Rev 114:1518CrossRefGoogle Scholar
  11. 11.
    Lenoir B, Cassart M, Michenaud JP, Scherrer H, Scherrer S (1996) J Phys Chem Solids 57:89CrossRefGoogle Scholar
  12. 12.
    Ellet MR, Horst RB, Williams LR, Cuff KF (1966) J Phys Soc Jpn 21:666Google Scholar
  13. 13.
    Chao PW, Chu HT, Kao YH (1974) Phys Rev B 9:4030CrossRefGoogle Scholar
  14. 14.
    Oelgart G, Schneider G, Kraak W, Herrmann R (1976) Phys Status Solidi (b) 74:K75CrossRefGoogle Scholar
  15. 15.
    Kraak W, Oelgart G, Schneider G, Herrmann R (1978) Phys Status Solidi (b) 88:105CrossRefGoogle Scholar
  16. 16.
    Kitagawa H, Noguchi H, Kiyabu T, Itoh M, Noda Y (2004) J Phys Chem Solids 65:1223CrossRefGoogle Scholar
  17. 17.
    Devaux X, Brochin F, Martin-Lopez R, Scherrer H (2002) J Phys Chem Solids 63:119CrossRefGoogle Scholar
  18. 18.
    Martin-Lopez R, Dauscher A, Scherrer H, Hejtmanek J, Kenzari H, Lenoir B (1999) Appl Phys A 68:597CrossRefGoogle Scholar
  19. 19.
    Sharp JW, Volckmann EH, Goldsmid HJ (2001) Phys Status Solidi (a) 2:257CrossRefGoogle Scholar
  20. 20.
    Belaya AD, Zayakin SA, Zemskov VS (1994) J Adv Mater 2:158Google Scholar
  21. 21.
    Ivanov GA, Kulikov VA, Naletov VL, Panarin AF, Regel AR (1973) Sov Phys Semicond 7:1134Google Scholar
  22. 22.
    Liu HJ, Li LF (2007) J Alloys Compd 433:279CrossRefGoogle Scholar
  23. 23.
    Dutta S, Shubha V, Ramesh TG, D’Sa F (2009) J Alloys Compd 467:305CrossRefGoogle Scholar
  24. 24.
    Schneider R, Chatterji T, Hoffmann JU, Hohlwein D (2000) Physica B 610:276Google Scholar
  25. 25.
    Snigirev OV, Tishin AM, Volkozub AV (1991) J Magn Magn Mater 94:342CrossRefGoogle Scholar
  26. 26.
    Gebhardt JR, Baer RA, Ali N (1997) J Alloys Compd 250:655CrossRefGoogle Scholar
  27. 27.
    Rosen M, Kalir D, Klimker H (1974) J Phys Chem Solids 35:1333CrossRefGoogle Scholar
  28. 28.
    Jensen J, Mackintosh AR (1992) J Magn Magn Mater 1481:104Google Scholar
  29. 29.
    Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF (2008) Science 320:634CrossRefGoogle Scholar
  30. 30.
    Ma Y, Hao Q, Poudel B, Lan YC, Yu B, Wang DZ, Chen G, Ren ZF (2008) Nano Lett 8:2580CrossRefGoogle Scholar
  31. 31.
    Zhu GH, Lan YC, Wang DZ, Vashaee D, Lee H, Wang XW, Joshi G, Yang J, Guilbert H, Pillitteri A, Dresselhaus MS, Chen G, Ren ZF (2009) Phys Rev Lett 102:196803CrossRefGoogle Scholar
  32. 32.
    Yan X, Poudel B, Ma Y, Lan Y, Joshi G, Liu WS, Wang H, Wang DZ, Chen G, Ren ZF (2010) Nano Lett 10:3373CrossRefGoogle Scholar
  33. 33.
    Zhitinskaya MK, Nemov SA, Ravich YI (1998) Phys Solid State 40(7):109CrossRefGoogle Scholar
  34. 34.
    Hattori T (1970) J Phys Soc Jpn 29(5):1224CrossRefGoogle Scholar
  35. 35.
    Hor YS, Cava RJ (2009) J Alloys Compd 479:368CrossRefGoogle Scholar
  36. 36.
    Goldsmid HJ, Lyon HB, Volckmann EH (1995) In: Proceedings of XIV International Conference on Thermoelectrics. ZT Services Inc, Aubun, AIGoogle Scholar
  37. 37.
    Noguchi H, Kitagawa H, Kiyabu T, Hasezaki K, Noda Y (2007) J Phys Chem Solids 61:91CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • K. C. Lukas
    • 1
    Email author
  • G. Joshi
    • 1
  • K. Modic
    • 2
  • Z. F. Ren
    • 1
  • C. P. Opeil
    • 1
  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations