Journal of Materials Science

, Volume 47, Issue 21, pp 7417–7438 | Cite as

Growth and interfacial properties of epitaxial oxides on semiconductors: ab initio insights

  • Kevin F. Garrity
  • Alexie M. Kolpak
  • Sohrab Ismail-Beigi
First Principles Computations


Crystalline metal oxides display a large number of physical functionalities such as ferroelectricity, magnetism, superconductivity, and Mott transitions. High quality heterostructures involving metal oxides and workhorse semiconductors such as silicon have the potential to open new directions in electronic device design that harness these degrees of freedom for computation or information storage. This review describes how first-principles theoretical modeling has informed current understanding of the growth mechanisms and resulting interfacial structures of crystalline, coherent, and epitaxial metal oxide thin films on semiconductors. Two overarching themes in this general area are addressed. First, the initial steps of oxide growth involve careful preparation of the semiconductor surface to guard against amorphous oxide formation and to create an ordered template for epitaxy. The methods by which this is achieved are reviewed, and possibilities for improving present processes to enable the epitaxial growth of a wider set of oxides are discussed. Second, once a heterointerface is created, the precise interfacial chemical composition and atomic structure is difficult to determine unambiguously from experiment or theory alone. The current understanding of the structure and properties of complex oxide/semiconductor heterostructures is reviewed, and the main challenges to prediction—namely, (i) are these heterostructures in thermodynamic equilibrium or kinetically trapped, and (ii) how do the interfaces modify or couple to the degrees of freedom in the oxide?—are explored in detail for two metal oxide thin films on silicon. Finally, an outlook of where theoretical efforts in this field may be headed in the near future is provided.


Density Functional Theory Scanning Tunneling Microscopy Image LaAlO3 Reflection High Energy Electron Diffraction Oxygen Chemical Potential 



We are grateful for extensive collaborative opportunities and numerous discussions with our colleagues including Charles Ahn, Eric Altman, Christine Broadbridge, Victor Henrich, Jason Hoffman, Jay Kerwin, Agham Posadas, James Reiner, Yaron Segal, John Tully, and Frederick Walker. This work was primarily supported by the NSF MRSEC program under Grant No. MRSEC DMR-1119826. Computational facilities were provided by the Yale University Faculty of Arts and Sciences High Performance Computing Center, by the National Science Foundation under Grant #CNS 08-21132 that partially funded acquisition of the facilities, as well as the NSF TeraGrid computer systems.


  1. 1.
    Turley J (2002) The two percent solution. Electronic Engineering Times, Dec 18 2002.
  2. 2.
    Wilk GD, Wallace RM, Anthony JM (2001) J Appl Phys 89(10):5243CrossRefGoogle Scholar
  3. 3.
    Moore G (1965) Electron Mag 38:4Google Scholar
  4. 4.
    Schaller RR (1997) IEEE Spectr 34:52CrossRefGoogle Scholar
  5. 5.
    McKee RA, Walker FJ, Chisholm MF (1998) Phys Rev Lett 81(14):3014CrossRefGoogle Scholar
  6. 6.
    Reiner JW, Kolpak AM, Segal Y, Garrity KF, Ismail-Beigi S, Ahn CH, Walker FJ (2010) Adv Mater 22:2919CrossRefGoogle Scholar
  7. 7.
    Kolpak A, Walker F, Reiner J, Segal Y, Su D, Sawicki M, Broadbridge C, Zhang Z, Zhu Y, Ahn C, Ismail-Beigi S (2010) Phys Rev Lett 105(21):217601CrossRefGoogle Scholar
  8. 8.
    Wolfram T, Ellialtioglu S (2006) Electronic and optical properties of d-band perovskites. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. 9.
    Looney DH (1957) U.S. Patent 2,791,758Google Scholar
  10. 10.
    Brown WL (1957) U.S. Patent 2,791,759Google Scholar
  11. 11.
    Morton JA (1957) U.S. Patent 2,791,761Google Scholar
  12. 12.
    Ross IM (1957) U.S. Patent 2,791,760Google Scholar
  13. 13.
    McKee RA, Walker FJ, Nardelli MB, Shelton WA, Stocks GM (2003) Science 300(5626):1726CrossRefGoogle Scholar
  14. 14.
    Lettieri J, Haeni JH, Schlom DG (2002) J Vac Sci Technol A 20(4):1332CrossRefGoogle Scholar
  15. 15.
    Reiner JW, Garrity KF, Walker FJ, Ismail-Beigi S, Ahn CH (2008) Phys Rev Lett 101:105503CrossRefGoogle Scholar
  16. 16.
    Ashman CR, Först CJ, Schwarz K, Blöchl PE (2004) Phys Rev B 69(7):075309CrossRefGoogle Scholar
  17. 17.
    Garrity K, Ismail-Beigi S (2009) Phys Rev B 80:085306CrossRefGoogle Scholar
  18. 18.
    Fan WC, Wu NJ, Ignatiev A (1990) Phys Rev B 42(2):1254CrossRefGoogle Scholar
  19. 19.
    Kazzi ME, Delhaye G, Merckling C, Bergignat E, Robach Y, Grenet G, Hollinger G (2007) J. Vac. Sci. Tech A 25(6):1505CrossRefGoogle Scholar
  20. 20.
    Garrity KF (2011) Yale Doctoral ThesisGoogle Scholar
  21. 21.
    Schaadt DM, Yu ET, Vaithyanathan V, Schlom DG (2004) J Vac Sci Technol B 22:2030CrossRefGoogle Scholar
  22. 22.
    Li H, Hu X, Wei Y, Yu Z, Zhang X, Droopad R, Demkov AA, Edwards J, Moore K, Ooms W, Kulik J, Fejes P (2003) J Appl Phys 93:4521CrossRefGoogle Scholar
  23. 23.
    Shutthanandan V, Thevuthasan S, Liang Y, Adams EM, Yu Z, Droopad R (2002) Appl Phys Lett 80:1803CrossRefGoogle Scholar
  24. 24.
    Bakhtizin RZ, Kishimoto J, Hashizume T, Sakurai T (1996) J Vac Sci Technol B 14(2):1000CrossRefGoogle Scholar
  25. 25.
    Du W, Wang B, Xu L, Hu Z, Cui X, Pan BC, Yang J, Hou JG (2008) J Phys Chem A 129:164707Google Scholar
  26. 26.
    He J, Zhang G, Guo J, Guo Q, Wu K (2011) J Appl Phys 109(8):083522Google Scholar
  27. 27.
    Liang Y, Gan S, Wei Y, Gregory R (2006) Phys Status Solidi B 243:2098CrossRefGoogle Scholar
  28. 28.
    Reiner JW, Segal Y, Garrity KF, Hong H, Ismail-Beigi S, Ahn CH, Walker FJ (2009) J Vac Sci Technol B 27(4):2015CrossRefGoogle Scholar
  29. 29.
    Garrity KF, Padmore MR, Segal Y, Reiner J, Walker F, Ahn C, Ismail-Beigi S (2010) Surf Sci Rep 604(9-10):857Google Scholar
  30. 30.
    Alerhand OL, Berker AN, Joannopoulos JD, Vanderbilt D, Hamers RJ, Demuth JE (1990) Phys Rev Lett 64:2406Google Scholar
  31. 31.
    Wang J, Hallmark JA, Marshall DS, Ooms WJ, Ordejón P, Junquera J, Sánchez-Portal D, Artacho E, Soler JM (1999) Phys Rev B 60:4968Google Scholar
  32. 32.
    Zhang X, Demkov A (2008) J Appl Phys 103:103710CrossRefGoogle Scholar
  33. 33.
    Smith A, Jonsson H (1996) Phys Rev Lett 77:2518CrossRefGoogle Scholar
  34. 34.
    Borovsky B, Krueger M, Ganz E (1997) Phys Rev Lett 78:4229CrossRefGoogle Scholar
  35. 35.
    Jonsson H, Mills G, Jacobsen KW (1998) In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore, pp 385Google Scholar
  36. 36.
    Henkelman G, Uberuaga BP, Jonsson H (2000) J Phys Chem 113(22):9901Google Scholar
  37. 37.
    Ramstad A, Brocks G, Kelly PJ (1995) Phys Rev B 51:14504CrossRefGoogle Scholar
  38. 38.
    Robertson J (2006) Rep Prog Phys 69(2):327CrossRefGoogle Scholar
  39. 39.
    Edge L, Schlom D, Chambers S, Cicerrella E, Freeouf J, Hollander B, Schubert J (2004) Appl Phys Lett 84(5):726CrossRefGoogle Scholar
  40. 40.
    International Technology Roadmap for Semiconductors (2007)
  41. 41.
    Klenov DO, Schlom DG, Li H, Stemmer S (2005) Jpn J Appl Phys 44(20):L617CrossRefGoogle Scholar
  42. 42.
    Först CJ, Schwarz K, Blöchl PE (2005) Phys Rev Lett 95(13):137602CrossRefGoogle Scholar
  43. 43.
    Xiang W, Lu H, Chen Z, Lu X, He M, Tian H, Zhou Y, Li C, Ma X (2004) J Cryst Growth 271(1–2):165CrossRefGoogle Scholar
  44. 44.
    Reiner JW, Posadas A, Wang M, Sidorov M, Krivokapic Z, Walker FJ, Ma TP, Ahn CH (2009) J Appl Phys 105(12):124501CrossRefGoogle Scholar
  45. 45.
    Merckling C, Delhaye G, El-Kazzi M, Gaillard S, Rozier Y, Rapenne L, Chenevier B, Marty O, Saint-Girons G, Gendry M, Robach Y, Hollinger G (2007) Microelectronics reliability 47(4–5):540. 14th Workshop on Dielectrics in Microelectronics (WoDiM 2006)Google Scholar
  46. 46.
    Mi YY, Yu Z, Wang SJ, Lim PC, Foo YL, Huan ACH, Ong CK (2007) Appl Phys Lett 90(18):181925CrossRefGoogle Scholar
  47. 47.
    Ashman CR, Först CJ, Schwarz K, Blöchl PE (2004) Phys Rev B 70:155330CrossRefGoogle Scholar
  48. 48.
    Devos I, Boulenc P (2007) Appl Phys Lett 90:072906CrossRefGoogle Scholar
  49. 49.
    Zhu C, Misawa S, Tsukahara S, Kawazu A, Pang S (1999) Appl Phys A 68:145CrossRefGoogle Scholar
  50. 50.
    Zhu C, Misawa S, Tsukahara S (1996) J Appl Phys 80:4205CrossRefGoogle Scholar
  51. 51.
    Seo J, Park J, Jung S, Yoo KH, Whang C, Kim S, Choi D, Chae K (2006) Chem Phys Lett 417:72CrossRefGoogle Scholar
  52. 52.
    Zhu C, Kawazu A, Misawa S, Tsukahara S (1999) Phys Rev B 59:9760CrossRefGoogle Scholar
  53. 53.
    Knizhnik AA, Iskandarova IM, Bagaturyants AA, Potapkin BV, Fonseca LRC, Korkin A (2005) Phys Rev B 72:235329CrossRefGoogle Scholar
  54. 54.
    Brocks G, Kelly PJ, Car R (1993) Phys Rev Lett 70:2786CrossRefGoogle Scholar
  55. 55.
    Umeno Y, Kitamura T (2004) Modell Simul Mater Sci Eng 12:1147CrossRefGoogle Scholar
  56. 56.
    Brocks G, Kelly PJ, Car R (1994) J Vac Sci Technol B 12:2705CrossRefGoogle Scholar
  57. 57.
    McKee RA, Walker FJ, Nardelli MB, Shelton WA, Stocks GM (2003) Science 300:1726CrossRefGoogle Scholar
  58. 58.
    Mi SB, Jia CL, Vaithyanathan V, Houben L, Schubert J, Schlom DG, Urban K (2008) Appl Phys Lett 93:101913CrossRefGoogle Scholar
  59. 59.
    Kourkoutis LF, Hellberg CS, Vaithyanathan V, Li H, Parker MK, Andersen KE, Schlom DG, Muller DA (2008) Phys Rev Lett 100:036101CrossRefGoogle Scholar
  60. 60.
    Warusawithana MP, Cen C, Sleasman CR, Woicik JC, Li Y, Kourkoutis LF, Klug JA, Li H, Ryan P, Wang LP, Bedzyk M, Muller DA, Chen LQ, Levy J, Schlom DG (2009) Science 324:367CrossRefGoogle Scholar
  61. 61.
    Kolpak A, Walker F, Reiner J, Segal Y, Su D, Sawicki M, Broadbridge C, Zhang Z, Zhu Y, Ahn C, Ismail-Beigi S (2010) Phys Rev Lett 105(21):217601CrossRefGoogle Scholar
  62. 62.
    Chambers SA (2009) Adv Mater 22:219CrossRefGoogle Scholar
  63. 63.
    Kumah DP, Reiner JW, Segal Y, Kolpak AM, Zhang Z, Su D, Zhu Y, Sawicki MS, Broadbridge CC, Ahn CH, Walker FJ (2010) Appl Phys Lett 97(21):251902CrossRefGoogle Scholar
  64. 64.
    McKee R, Walker F, Conner J, Specht E, Zelmon D (1991) Appl Phys Lett 59:782CrossRefGoogle Scholar
  65. 65.
    Rossel C, Mereu B, Marchiori C, Caimi D, Sousa M, Guiller A, Siegwart H, Germann R, Locquet JP, Fompeyrine J, Webb DJ, Dieker C, Seo JW (2006) Appl Phys Lett 89:053506CrossRefGoogle Scholar
  66. 66.
    Forst CJ, Ashman CR, Schwarz K, Blochl PE (2003) Nature 427:53CrossRefGoogle Scholar
  67. 67.
    Peacock PW, Robertson J (2003) Appl Phys Lett 83:5497CrossRefGoogle Scholar
  68. 68.
    Zhang X, Demkov AA, Li H, Hu X, Wei Y, Kulik J (2003) Phys Rev B 68:125323CrossRefGoogle Scholar
  69. 69.
    Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, Choudhury S, Tian W, Hawley ME, Craigo B, Tagantsev AK, Pan XQ, Streiffer SK, Chen LQ, Kirchoefer SW, Levy J, Schlom DG (2004) Nature 430:758CrossRefGoogle Scholar
  70. 70.
    Woicik JC, Li H, Zschack P, Karapetrova E, Ryan P, Ashman CR, Hellberg CS (2006) Phys Rev B 73:024112CrossRefGoogle Scholar
  71. 71.
    Kholkin A, Bdikin I, Ostapchuk T, Petzelt J (2008) Appl Phys Lett 93:222905CrossRefGoogle Scholar
  72. 72.
    Leisegang T, Stocker H, Levin AA, Weibach T, Zschornak M, Gutmann E, Rickers K, Gemming S, Meyer DC (2009) Phys Rev Lett 102:087601CrossRefGoogle Scholar
  73. 73.
    Yu C, Scullin ML, Huijben M, Ramesh R, Majumdar A (2008) Appl Phys Lett 92:092118CrossRefGoogle Scholar
  74. 74.
    Segal Y, Reiner JW, Kolpak AM, Zhang Z, Ismail-Beigi S, Ahn CH, Walker FJ (2009) Phys Rev Lett 102(11):116101CrossRefGoogle Scholar
  75. 75.
    Kolpak AM, Ismail-Beigi S (2011) Phys Rev B 83:165318CrossRefGoogle Scholar
  76. 76.
    Kolpak AM, Ismail-Beigi S (2012) Phys Rev B (in press)Google Scholar
  77. 77.
    Yakovkin IN, Gutowski M (2004) Phys Rev B 70:165319CrossRefGoogle Scholar
  78. 78.
    Demkov AA, Fonseca LRC, Verret E, Tomfohr J, Sankey OF (2005) Phys Rev B 71:195306CrossRefGoogle Scholar
  79. 79.
    Robertson J (2006) Rep Prog Phys 69:327CrossRefGoogle Scholar
  80. 80.
    Reuter K, Scheffler M (2003) Phys Rev Lett 90:046103CrossRefGoogle Scholar
  81. 81.
    Chambers SA, Liang Y, Yu Z, Droopad R, Ramdani J, Eisenbeiser K (2000) Appl Phys Lett 77:1662CrossRefGoogle Scholar
  82. 82.
    Amy F, Wan AS, Kahn A, Walker FJ, McKee RA (2004) J Appl Phys 96:1635CrossRefGoogle Scholar
  83. 83.
    Chambers SA, Liang Y, Yu Z, Droopad R, Ramdani J (2001) J Vac Sci Technol A 19:934CrossRefGoogle Scholar
  84. 84.
    Junquera J, Ghosez P (2003) Nature 422:506CrossRefGoogle Scholar
  85. 85.
    Reiner J, Walker F, McKee R, Billman C, Junquera J, Rabe K, Ahn C (2004) Phys Status Solidi B 241:2287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kevin F. Garrity
    • 1
  • Alexie M. Kolpak
    • 2
  • Sohrab Ismail-Beigi
    • 3
  1. 1.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Applied PhysicsYale UniversityNew HavenUSA

Personalised recommendations