Journal of Materials Science

, Volume 47, Issue 21, pp 7542–7548 | Cite as

GGA+U method from first principles: application to reduction–oxidation properties in ceria-based oxides

  • Amra Peles
First Principles Computations


We implement DFT calculations by a Hubbard-like correction for localized strongly correlated electrons, coupled with a generalized gradient approximation to the exchange-correlation functional to elucidate the role of the ceria based catalytically active supports for the chemical reactions involving reduction–oxidation processes. These catalytic processes are relevant for many industrial applications, such as catalytic converters in automotive applications, solid oxide fuel cells, and hydrogen production from biomass. The Hubbard-like correction U is computed from first principles as physical property of the system. We find that the high performance of ceria-based oxides as an active support for noble metals in catalysis relies on an efficient supply of lattice oxygen at reaction sites governed by oxygen vacancy formation.


Density Functional Theory Ceria CeO2 Generalize Gradient Approximation Local Density Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks M. Marsman and G. Kresse for help with linear response method implementation in VASP. The author acknowledges useful discussion with S. Emerson, T. Vanderspurt, R. Willigan and T. Davis. This material is based upon work supported by the Department of Energy under award number DE-FG36-05GO15042. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the office of Science of the Department of Energy under contract DE-AC05-00OR22725.


  1. 1.
    Trovarelli A (2002) Catalysis by ceria and related materials. Imperial College Press, LondonGoogle Scholar
  2. 2.
    Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) Catal Today 50:353CrossRefGoogle Scholar
  3. 3.
    Inaba H, Tagawa H (1996) Solid State Ion 83:1CrossRefGoogle Scholar
  4. 4.
    Burch R (2006) Phys Chem Chem Phys 8:5483. doi: 10.1039/B607837K CrossRefGoogle Scholar
  5. 5.
    Qi F, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935. doi: 10.1126/science.1085721 CrossRefGoogle Scholar
  6. 6.
    Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B 15:107. doi: 10.1016/S0926-3373(97)00040-4 CrossRefGoogle Scholar
  7. 7.
    Swartz SL, Seabaugh MM, Holt CT, Dawson WJ (2001) Fuel Cell Bull 30:7CrossRefGoogle Scholar
  8. 8.
    Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964CrossRefGoogle Scholar
  9. 9.
    Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Appl Catal B 27:179. doi: 10.1016/S0926-3373(00)00147-8 CrossRefGoogle Scholar
  10. 10.
    Trovarelli A (1996) Catal Rev Sci Eng 38:439CrossRefGoogle Scholar
  11. 11.
    Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Science 318:1757. doi: 10.1126/science.1150038 CrossRefGoogle Scholar
  12. 12.
    Jacobs G, Ricote S, Davis BH (2006) Appl Catal A 302:14. doi: 10.1016/j.apcata.2005.10.052 CrossRefGoogle Scholar
  13. 13.
    Gorte RJ, Zhao S (2005) Catal Today 104:18. doi: 10.1016/j.cattod.2005.03.034 CrossRefGoogle Scholar
  14. 14.
    Janak JF (1978) Phys Rev B 18:7165. doi: 10.1103/PhysRevB.18.7165 CrossRefGoogle Scholar
  15. 15.
    Perdew JP, Parr RG, Levy M, Balduz JM (1982) Phys Rev Lett 49:1691. doi: 10.1103/PhysRevLett.49.1691 CrossRefGoogle Scholar
  16. 16.
    Perdew JP, Levy M (1983) Phys Rev Lett 51:1884. doi: 10.1103/PhysRevLett.51.1884 CrossRefGoogle Scholar
  17. 17.
    Sham LJ, Schlüter M (1983) Phys Rev Lett 51:1888. doi: 10.1103/PhysRevLett.51.1888 CrossRefGoogle Scholar
  18. 18.
    Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207CrossRefGoogle Scholar
  19. 19.
    Heyd J, Scuseria GE (2004) J Chem Phys 121:1187. doi: 10.1063/1.1760074 CrossRefGoogle Scholar
  20. 20.
    Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124:219906CrossRefGoogle Scholar
  21. 21.
    Liechtenstein AI, Anisimov VI, Zaane J (1995) Phys Rev B 52:R5467. doi: 10.1103/PhysRevB.52.R5467 CrossRefGoogle Scholar
  22. 22.
    Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943. doi: 10.1103/PhysRevB.44.943 CrossRefGoogle Scholar
  23. 23.
    Anisimov VI, Aryasetiawan F, Liechtenstein AI (1997) J Phys Condens Matter 9:767. doi: 10.1088/0953-8984/9/4/002 CrossRefGoogle Scholar
  24. 24.
    Anisimov VI, Zaanen J, Anderson OK (1991) Phys Rev B 44:943. doi: 10.1103/PhysRevB.44.943 CrossRefGoogle Scholar
  25. 25.
    Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G (2005) Phys Rev B 71:041102(R)CrossRefGoogle Scholar
  26. 26.
    Kresse G, Blaha P, Da Silva JL, Ganduglia-Pirovano MV (2005) Phys Rev B 72:237101. doi: 10.1103/PhysRevB.72.237101 CrossRefGoogle Scholar
  27. 27.
    Nolan M, Grigoleit S, Sayle DC, Parker SC, Watson GW (2005) Surf Sci 576:217. doi: 10.1016/j.susc.2004.12.016 CrossRefGoogle Scholar
  28. 28.
    Jiang Y, Adams JB, van Schilfgaarde M (2005) J Chem Phys 123:064701CrossRefGoogle Scholar
  29. 29.
    Zhang C, Michaelides A, King DA, Jenkins SJ (2008) J Chem Phys 129:194708CrossRefGoogle Scholar
  30. 30.
    Castleton CWM, Kullgren J, Hermansson K (2007) J Chem Phys 127:244704CrossRefGoogle Scholar
  31. 31.
    Loschen C, Carrasco J, Neyman KM, Illas F (2007) Phys Rev B 75:035115. doi: 10.1103/PhysRevB.75.035115 CrossRefGoogle Scholar
  32. 32.
    Solovyev IV, Dederichs PH, Anisimov VI (1994) Phys Rev B 50:16861. doi: 10.1103/PhysRevB.50.16861 CrossRefGoogle Scholar
  33. 33.
    Cococcioni M, de Gironcoli S (2005) Phys Rev B 71:035105. doi: 10.1103/PhysRevB.71.035105 CrossRefGoogle Scholar
  34. 34.
    Anisimov VI, Gunnarsson O (1991) Phys Rev B 43:7570. doi: 10.1103/PhysRevB.43.7570 CrossRefGoogle Scholar
  35. 35.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864. doi: 10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  36. 36.
    Kohn W, Sham L (1965) Phys Rev 140:A1133. doi: 10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  37. 37.
    Bl¨ochl PE (1994) Phys Rev B 50:17953. doi: 10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  38. 38.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169. doi: 10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  39. 39.
    Kresse G, Hafner J (1993) Phys Rev B 47:R558. doi: 10.1103/PhysRevB.47.558 CrossRefGoogle Scholar
  40. 40.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865. doi: 10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  41. 41.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505. doi: 10.1103/PhysRevB.57.1505 CrossRefGoogle Scholar
  42. 42.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188. doi: 10.1103/PhysRevB.13.5188 CrossRefGoogle Scholar
  43. 43.
    Wuilloud E, Delley B, Schneider W-D, Baer Y (1984) Phys Rev Lett 53:202. doi: 10.1103/PhysRevLett.53.202 CrossRefGoogle Scholar
  44. 44.
    Prokofiev AV, Shelykh AI, Melekh BT (1996) J Alloys Compd 242:41. doi: 10.1016/0925-8388(96)02293-1 CrossRefGoogle Scholar
  45. 45.
    Pinto H, Mintz MH, Melamud M, Shaked H (2002) Phys Lett A 88:22. doi: 10.1016/0375-9601(82)90596-5 Google Scholar
  46. 46.
    Sørensen OT (1976) J Solid State Chem 18:217. doi: 10.1016/0022-4596(76)90099-2 CrossRefGoogle Scholar
  47. 47.
    Gasgnier M, Schiffmacher G, Caro P, Eyring L (1986) J Less-Common Metals 116:31. doi: 10.1016/0022-5088(86)90214-6 CrossRefGoogle Scholar
  48. 48.
    Bärnighausen H, Schiller GJ (1985) Less-Common Met 110:385. doi: 10.1016/0022-5088(85)90347-9 CrossRefGoogle Scholar
  49. 49.
    Gerwarda L, Olsenb JS, Petitc L, Vaitheeswarand G, Kanchanad V, Svanee A (2005) J Alloys Compd 400:56. doi: 10.1016/j.jallcom.2005.04.008 CrossRefGoogle Scholar
  50. 50.
    Duclos SJ, Vohra YK, Ruoff AL, Jayaraman A, Espinosa GP (1988) Phys Rev B 38:7755. doi: 10.1103/PhysRevB.38.7755 CrossRefGoogle Scholar
  51. 51.
    Gerward L, Olsen JS (1993) Powder Diffr 8:127Google Scholar
  52. 52.
    Murnaghan FD (1944) Proc Nat Acad Sci USA 30:244. doi: 10.1073/pnas.30.9.244 CrossRefGoogle Scholar
  53. 53.
    Birch F (1947) Phys Rev 71:809. doi: 10.1103/PhysRev.71.809 CrossRefGoogle Scholar
  54. 54.
    Jiang H, Gomez-Abal RI, Rinke P, Scheffler M (2009) Phys Rev Lett 102:126403. doi: 10.1103/PhysRevLett.102.126403 CrossRefGoogle Scholar
  55. 55.
    Yan GH et al (2010) In: Karl AG Jr, Jean-Claude B, Vitalij KP (eds) Handbook on the physics and chemistry of rare earths, vol 41. Elsevier Science B. V. Amsterdam, The Netherlands, p 310Google Scholar
  56. 56.
    Mullins DR, Overbury SH, Huntley DR (1998) Surf Sci 409:307. doi: 10.1016/S0039-6028(98)00257-X CrossRefGoogle Scholar
  57. 57.
    Tuller HL, Nowick AS (1979) J Electrochem Soc 126:209. doi: 10.1149/1.2129007 CrossRefGoogle Scholar
  58. 58.
    Chiang Y-M, Lavik EB, Kosacki I, Tuller HL, Ying JY (1996) Appl Phys Lett 69:185CrossRefGoogle Scholar
  59. 59.
    Chiang YM, Lavik EB, Blom DA (1997) Nanostruct Mater 9:633. doi: 10.1016/S0965-9773(97)00142-6 CrossRefGoogle Scholar
  60. 60.
    Sugiura M (2003) Catal Surv Asia 7:77. doi: 10.1023/A:1023488709527 CrossRefGoogle Scholar
  61. 61.
    Esch F et al (2005) Science 309:752. doi: 10.1126/science.1111568 CrossRefGoogle Scholar
  62. 62.
    Nolan M, Fearon JE, Watson GW (2006) Solid State Ion 177:3069CrossRefGoogle Scholar
  63. 63.
    Nolan M, Grigoleit S, Sayle DC, Parker SC, Watson GW (2005) Surf Sci 576:217CrossRefGoogle Scholar
  64. 64.
    Yang Z, Woo TK, Baudin M, Hermansson K (2004) J Chem Phys 120:7741. doi: 10.1063/1.1688316 CrossRefGoogle Scholar
  65. 65.
    Ganduglia-Pirovano MV, Da Silva JLF, Sauer J (2009) Phys Rev Lett 102:026101. doi: 10.1103/PhysRevLett.102.026101 CrossRefGoogle Scholar
  66. 66.
    Azzam KG, Babich IV, Seshan L, Lefferts L (2007) J Catal 251:153. doi: 10.1016/j.jcat.2007.07.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.United Technologies Research CenterEast HartfordUSA

Personalised recommendations