Journal of Materials Science

, Volume 47, Issue 13, pp 5298–5307 | Cite as

Depleted brittle mica structure determination in Ba-phlogopite glass–ceramics

  • S. BroadyEmail author
  • D. J. Wood
  • S. H. Kilcoyne
  • N. L. Bubb


This study concerns the bulk mica phase of a barium phlogopite glass–ceramic, with potential applications in Computer Aided Design and Computer Aided Manufacturing in dentistry, which has been studied in detail and characterized for the first time. A number of analytical techniques including powder X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectroscopy, electron micro-probe analysis (EMPA), single crystal XRD and Monte-Carlo methods have been used to determine the mica phase composition and crystallographic structure. This has led to the identification of a new species of trioctahedral interlayer deficient brittle mica with an ideal formula of Ba2/3Mg3(Si8/3Al4/3)O10F2. Monte-Carlo simulations of Si/Al cation ordering indicate that the (Si8/3Al4/3) tetrahedral composition is unique and energetically favoured over that of the original assumed mica phase of Ba0.5Mg3(Si3AlO10)F2. The general mica composition X0.5Mg3(Si3Al)O10F2 where X is a divalent interlayer cation; therefore, does not precipitate in brittle mica glass–ceramics.


Rietveld Refinement Single Crystal Diffraction Single Crystal Growth Interlayer Cation General Mica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to the Engineering and Physical Sciences Research Council (EPSRC) for financial support. Practical assistance was provided by Geoff Parr, University of Salford Analytical Services (UK), with XRD/SEM/EDS, Dr. Eric Condliffe, University of Leeds Institute for Materials Research (UK), with EMPA and Colin Kilner, University of Leeds (Chemistry), with the single crystal diffraction experiment.


  1. 1.
    Hoda SN, Beall GH (1982) J Am Ceram Soc 4:287Google Scholar
  2. 2.
    Uno T, Kasuga T, Nakajima T (1991) J Am Ceram Soc 74:3139CrossRefGoogle Scholar
  3. 3.
    Henry J, Hill RG (2003) J Non-Cryst Solids 319:1CrossRefGoogle Scholar
  4. 4.
    Henry J, Hill RG (2004) J Mater Sci 39:2499. doi: 10.1023/B:JMSC.0000020016.18068.e6 CrossRefGoogle Scholar
  5. 5.
    Chaysuwan D, Chongsaguan J, Bumrungvej T (2006) Proc of the Sixth Asian BioCeramics Symp. Asian Bioceramics, Bangkok, Thailand, p 29Google Scholar
  6. 6.
    Bentley PM, Kilcoyne SH, Bubb NL, Ritter C, Dewhurst CD, Wood DJ (2007) Biomed Mater 2:151CrossRefGoogle Scholar
  7. 7.
    Rietveld HM (1969) J Appl Cryst 2:65CrossRefGoogle Scholar
  8. 8.
    Ostrogorsky AG (1990) Meas Sci Technol 1:463CrossRefGoogle Scholar
  9. 9.
    Beurskens PT, Beurskens G, de Gelder R, Smits JMM, Garcia-Grander S, Gould RO (2008) Dirdif-2008 manual. Radboud University, Nijmegen, The NetherlandsGoogle Scholar
  10. 10.
    Sheldrick GM (2008) Acta Cryst A 64:112CrossRefGoogle Scholar
  11. 11.
    Larson AC, Von Dreele RB (1985–2005) GSAS Manual. University of California, Los AlamosGoogle Scholar
  12. 12.
    Klaus M, Lothas M, Mathias H (1992) Binder for metal or ceramic powder. US Patent Number 5098942Google Scholar
  13. 13.
    Hillier S (1999) Clay Min 34:127CrossRefGoogle Scholar
  14. 14.
    McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1998) J Appl Cryst 32:36CrossRefGoogle Scholar
  15. 15.
    Momma K, Izumi F (2008) J Appl Cryst 41:653CrossRefGoogle Scholar
  16. 16.
    Gnos E, Armbruster T (2000) Am Min 85:242Google Scholar
  17. 17.
    Fleet ME (2003) Micas. The Geological Society, London, p 342Google Scholar
  18. 18.
    Altermatt UD, Brown ID (1987) Acta Cryst A 34:125CrossRefGoogle Scholar
  19. 19.
    Ohashi Y (1984) Phys Chem Min 10:217CrossRefGoogle Scholar
  20. 20.
    Downs RT, Palmer DC (1994) Am Min 79:9Google Scholar
  21. 21.
    Baur WH (1956) Acta Cryst 9:515CrossRefGoogle Scholar
  22. 22.
    Herrero CP, Sanz J, Serratosa JM (1986) J Phys C: Solid State Phys 19:4169CrossRefGoogle Scholar
  23. 23.
    Herrero CP, Gregorkiewitz M, Sanz J, Serratosa JM (1987) Phys Chem Min 15:84CrossRefGoogle Scholar
  24. 24.
    Herrero CP, Sanz J, Serratosa JM (1985) J Phys C: Solid State Phys 18:13CrossRefGoogle Scholar
  25. 25.
    Loewenstein W (1954) Am Min 39:92Google Scholar
  26. 26.
    Palin EJ, Dove MT, Redfern SAT, Bosenick A, Sainz-Diaz CI, Warren MC (2001) Phys Chem Min 28:534CrossRefGoogle Scholar
  27. 27.
    Rieder M, Cavazzini G, D’Yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S et al (1998) Can Min 36:905Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • S. Broady
    • 1
    Email author
  • D. J. Wood
    • 1
  • S. H. Kilcoyne
    • 2
  • N. L. Bubb
    • 1
  1. 1.Department of Oral Biology, Leeds Dental InstituteUniversity of LeedsLeedsUK
  2. 2.School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK

Personalised recommendations