Journal of Materials Science

, Volume 47, Issue 21, pp 7580–7586 | Cite as

Dielectric permittivity of ultrathin PbTiO3 nanowires from first principles

  • G. Pilania
  • R. RamprasadEmail author
First Principles Computations


We propose an efficient method to compute the dielectric permittivity of nanostructures by combining first principles density functional perturbation theory with effective medium theory. Specifically, ultrathin axially symmetric ferroelectric PbTiO3 nanowires are considered. As established previously by Pilania and Ramprasad (Phys Rev B 82:155442, 2010), (4 × 4) PbO-terminated nanowire and (4 × 4) TiO2-terminated nanowire display, respectively, a uniform axial and a vortex polarization in their ground state configurations (the latter with a non-zero axial toroidal moment). Both nanowires, regardless of the lateral surface termination, display a significantly larger dielectric constant value along the axial direction, and diminished values along the off-axis directions, as compared to the corresponding bulk values. Our results further suggest that the nanowires with unconventional vortex-type polarization states are expected to have an increased dielectric response as compared to those with conventional uniform axial polarization. The method proposed here is quite general and readily extendable to other zero-, one-, and two-dimensional nanostructures.


Dielectric Constant Dielectric Permittivity Dielectric Response Vortex Polarization Effective Medium Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge financial support of this study by a grant from the Office of Naval Research. Computational support was provided through a National Science Foundation Teragrid Resource Allocation.


  1. 1.
    Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W (1999) Nature (London) 401:682CrossRefGoogle Scholar
  2. 2.
    Velu G, Legrand C, Tharaud O, Chapoton A, Remiens D, Horowitz G (2001) Appl Phys Lett 79:659CrossRefGoogle Scholar
  3. 3.
    Han S, Liu X, Han J-P, Zhou C (2003) Appl Phys A 77:873CrossRefGoogle Scholar
  4. 4.
    Han J, Ma TP (1998) Appl Phys Lett 72:1185CrossRefGoogle Scholar
  5. 5.
    Auciello O, Scott JF, Ramesh R (1998) Phys Today 51:22CrossRefGoogle Scholar
  6. 6.
    Kim P, Jones SC, Hotchkiss PJ, Haddock JN, Kippelen B, Marder SR, Perry JW (2007) Adv Mater 19:1001CrossRefGoogle Scholar
  7. 7.
    Schroeder R, Majewski LA, Grell M (2005) Adv Mater 17:1535CrossRefGoogle Scholar
  8. 8.
    Cao Y, Irwin PC, Younsi K (2004) IEEE Trans Dielectr Electr Insul 11:797CrossRefGoogle Scholar
  9. 9.
    Bai Y, Cheng Z-Y, Bharti V, Xu HS, Zhang QM (2000) Appl Phys Lett 76:3804CrossRefGoogle Scholar
  10. 10.
    Hippel AV (ed) (1954) Dielectric materials and applications. Technology Press of MIT, CambridgeGoogle Scholar
  11. 11.
    Scott JF (2000) Ferroelectric memories. Springer, BerlinGoogle Scholar
  12. 12.
    Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon, OxfordGoogle Scholar
  13. 13.
    Rabe, K, Ahn, ChH, Triscone, J-M (eds) (2007) Physics of ferroelectrics: a modern perspective. Springer, BerlinGoogle Scholar
  14. 14.
    Junquera J, Ghosez Ph (2008) J Comput Theor Nanosci 5:2071CrossRefGoogle Scholar
  15. 15.
    Rabe KM (2005) Curr Opin Solid State Mater Sci 9:122CrossRefGoogle Scholar
  16. 16.
    Junquera J, Ghosez Ph (2003) Nature (London) 422:506CrossRefGoogle Scholar
  17. 17.
    Fu H, Bellaiche L (2003) Phys Rev Lett 91:257601CrossRefGoogle Scholar
  18. 18.
    Naumov I, Bellaiche L, Fu H (2004) Nature 432:737CrossRefGoogle Scholar
  19. 19.
    Ponomareva I, Naumov I, Kornev I, Fu H, Bellaiche L (2005) Curr Opin Solid State Mater Sci 9:114CrossRefGoogle Scholar
  20. 20.
    Prosandeev S, Bellaiche L (2007) Phys Rev B 75:094102CrossRefGoogle Scholar
  21. 21.
    Pilania G, Ramprasad R (2010) Phys Rev B 82:155442CrossRefGoogle Scholar
  22. 22.
    Pilania G, Alpay SP, Ramprasad R (2009) Phys Rev B 80:014113CrossRefGoogle Scholar
  23. 23.
    Durgun E, Ghosez Ph, Shaltaf R, Gonze X, Raty J-Y (2009) Phys Rev Lett 103:247601CrossRefGoogle Scholar
  24. 24.
    Aguado-Puente P, Junquera J (2008) Phys Rev Lett 100:177601CrossRefGoogle Scholar
  25. 25.
    Shimada T, Tomoda S, Kitamura T (2010) Phys Rev B 81:144116CrossRefGoogle Scholar
  26. 26.
    Shimada T, Wang X, Tomoda S, Marton P, Elsässer C, Kitamura T (2011) Phys Rev B 83:094121CrossRefGoogle Scholar
  27. 27.
    Gruverman A, Wu D, Fan H-J, Vrejoiu I, Alexe M, Harrison RJ, Scott JF (2008) J Phys: Condens Matter 20:342201CrossRefGoogle Scholar
  28. 28.
    Thompson C, Fong DD, Wang RV, Jiang F, Streiffer SK, Latifi K, Eastman JA, Fuoss PH, Stephenson GB (2008) Appl Phys Lett 93:182901CrossRefGoogle Scholar
  29. 29.
    Kittel C (1946) Phys Rev 70:965CrossRefGoogle Scholar
  30. 30.
    Ginzburg VL, Gorbatsevich AA, Kopayev YV, Volkov BA (1984) Solid State Commun 50((4):339CrossRefGoogle Scholar
  31. 31.
    Harrison RJ, Dunin-Borkowski RE, Putnis A (2002) Proc Natl Acad Sci USA 99:16556CrossRefGoogle Scholar
  32. 32.
    Baroni S, de Gironcoli S, Corso AD, Giannozzi P (2001) Rev Mod Phys 73:515CrossRefGoogle Scholar
  33. 33.
    Gonze X, Lee C (1997) Phys Rev B 55:10355CrossRefGoogle Scholar
  34. 34.
    Giustino F, Pasquarello A (2005) Phys Rev B 71:144104CrossRefGoogle Scholar
  35. 35.
    Hamel S, Williamson AJ, Wilson HF, Gygi F, Galli G, Ratner E, Wack D (2008) Appl Phys Lett 92:043115CrossRefGoogle Scholar
  36. 36.
    Nakamura J, Ishihara S, Natori A, Shimizu T, Natori K (2006) J Appl Phys 99:054309CrossRefGoogle Scholar
  37. 37.
    Nakamura K, Natori J (2006) Appl Phys Lett 89:053118CrossRefGoogle Scholar
  38. 38.
    Ramprasad R, Shi N (2005) Phys Rev B 72:052107CrossRefGoogle Scholar
  39. 39.
    Shi N, Ramprasad R (2005) Appl Phys Lett 87:262102CrossRefGoogle Scholar
  40. 40.
    Shi N, Ramprasad R (2006) Phys Rev B 74:045318CrossRefGoogle Scholar
  41. 41.
    Yu L, Ranjan V, Nardelli MB, Bernholc J (2009) Phys Rev B 80:165432CrossRefGoogle Scholar
  42. 42.
    Pham TA, Li T, Shankar S, Gygi F, Galli G (2011) Phys Rev B 84:045308CrossRefGoogle Scholar
  43. 43.
    Stengel M, Spaldin NA (2007) Phys Rev B 75:205121CrossRefGoogle Scholar
  44. 44.
    Stengel M, Vanderbilt D, Spaldin NA (2009) Nat Mater 8:392CrossRefGoogle Scholar
  45. 45.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  46. 46.
    Kohn W, Sham L (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  47. 47.
    Kresse G, Hafner J (1996) J Phys Rev B 47:558CrossRefGoogle Scholar
  48. 48.
    Kresse G, Furthmüller J (1996) J Phys Rev B 54:11169CrossRefGoogle Scholar
  49. 49.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  50. 50.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  51. 51.
    Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566CrossRefGoogle Scholar
  52. 52.
    Wu Z, Cohen RE, Singh DJ (2004) Phys Rev B 70:104112CrossRefGoogle Scholar
  53. 53.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  54. 54.
    Nelmes RJ, Kuhs WF (1985) Solid State Commun 54:721CrossRefGoogle Scholar
  55. 55.
    Choy TC (1999) Effective medium theory: principles and applications. Oxford University Press Inc., OxfordGoogle Scholar
  56. 56.
    Osborn JA (1945) Phys Rev 67:351CrossRefGoogle Scholar
  57. 57.
    Stoner EC (1945) Phil Mag 36:803Google Scholar
  58. 58.
    Landau LD, Lifshitz EM, Pitaevskiǐ LP (1984) Electrodynamics of continuous media, second edition: vol 8 course of theoretical physics. Pergamon Press, OxfordGoogle Scholar
  59. 59.
    Burns G, Dacol FH, Remeika JP, Taylor W (1982) Phys Rev B 26:2707CrossRefGoogle Scholar
  60. 60.
    Kleemann W, Schäfer FJ, Rytz D (1986) Phys Rev B 34:7873CrossRefGoogle Scholar
  61. 61.
    Ghosez Ph, Cockayne E, Waghmare UV, Rabe KM (1999) Phys Rev B 60:836CrossRefGoogle Scholar
  62. 62.
    Singh S, Remeika JP, Potopowicz JR (1972) Appl Phys Lett 20:135CrossRefGoogle Scholar
  63. 63.
    Frey R A, Silberman E (1976) Helv Phys Acta 49:1Google Scholar
  64. 64.
    Fontana MD, Idrissi H, Kugel GE, Wojcik K (1991) J Phys: Condens Matter 3:8695CrossRefGoogle Scholar
  65. 65.
    Foster CM, Li Z, Grimsditch M, Chan S-K, Lam DJ (1993) Phys Rev B 48:10160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Chemical, Materials, and Biomolecular Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations