Journal of Materials Science

, Volume 47, Issue 14, pp 5361–5373 | Cite as

Electro co-deposition of Ni–Al2O3 composite coatings

  • Ilaria CorniEmail author
  • Richard J. Chater
  • Aldo R. Boccaccini
  • Mary P. RyanEmail author


Nickel–Al2O3 composite coatings have been successfully deposited galvanostatically on to stainless steel substrates by electro co-deposition from a Watts bath containing between 50 and 150 g/l of sub-micron or nano- sized alumina particles applying current density of −10, −20 and −32 mA cm−2. The alumina distribution in the composite films on the two sides of the substrate was remarkably different due to solution hydrodynamics and electric field effects. The effect of current density, particle concentration in the bath and particle size are studied systematically producing a comprehensive set of data for better understanding the effects of these variables on the amount of particles co-deposited. The amount of Al2O3 co-deposited in the films increases with the particle concentration in the bath and strongly depends on the current density and on particle size. The effect of the current density and of the alumina inclusions on the crystallinity of the Ni matrix and on the Ni crystallites grain size has also been studied. The inclusions of nano or sub-micron-Al2O3 particles are found to strongly influence the metallic nickel microstructure.


Al2O3 Composite Film Work Electrode Al2O3 Particle Nickel Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support of the EU Marie Curie training grant (MEST-CT-2004-514667). We also thank Dr. Eva Garcia Lecina (CIDETEC, San Sebastián, Spain) for helpful discussions.


  1. 1.
    Hovestad A, Janssen LJJ (1995) J Appl Electrochem 25:519CrossRefGoogle Scholar
  2. 2.
    Stojak JL, Fransaer J, Talbot JB (2002) Adv Electrochem Sci Eng 7:193Google Scholar
  3. 3.
    Low CTJ, Wills RGA, Walsh FC (2006) Surf Coat Tech 201:371CrossRefGoogle Scholar
  4. 4.
    Guglielmi N (1972) J Electrochem Soc 119:1009CrossRefGoogle Scholar
  5. 5.
    Webb PR, Robertson NL (1994) J Electrochem Soc 141:669CrossRefGoogle Scholar
  6. 6.
    Qu NS, Chan KC, Zhu D (2004) Scripta Mater 50:1131CrossRefGoogle Scholar
  7. 7.
    Brugger R (1970) Nickel plating. Robert Draper Ltd, TeddingtonGoogle Scholar
  8. 8.
    Dennis JK, Such TE (1986) Nickel and chromium plating. Butterworths, LondonGoogle Scholar
  9. 9.
    Turunen E, Varis T, Gustafsson TE, Keskinen J, Falt T, Hannula SP (2006) Surf Coat Tech 200:4987CrossRefGoogle Scholar
  10. 10.
    Oberle RR, Scanlon MR, Cammarata RC, Searson PC (1995) Appl Phys Lett 66:19CrossRefGoogle Scholar
  11. 11.
    Nwoko VO, Shreir LL (1973) J Appl Electrochem 3:137CrossRefGoogle Scholar
  12. 12.
    Bund A, Thiemig D (2007) Surf Coat Tech 201:7092CrossRefGoogle Scholar
  13. 13.
    Chen L, Wang L, Zeng Z, Xu T (2006) Surf Coat Tech 201:599CrossRefGoogle Scholar
  14. 14.
    Shao I, Vereecken PM (2002) J Mater Res 17:1412CrossRefGoogle Scholar
  15. 15.
    Muller B, Ferkel H (1998) Nanostruct Mater 10:1285CrossRefGoogle Scholar
  16. 16.
    Chen L, Wang L, Zeng Z, Zhang J (2006) Mater Sci Eng A 434:319CrossRefGoogle Scholar
  17. 17.
    Ferkel H, Muller B, Riehemann W (1997) Mater Sci Eng A 234–236:474Google Scholar
  18. 18.
    Balaraju JN, Kalavati Rajam KS (2006) Surf Coat Tech 200:12Google Scholar
  19. 19.
    Banovic SW, Barmak K, Marder AR (1999) J Mater Sci 34:3203. doi: 10.1023/A:1004633923681 CrossRefGoogle Scholar
  20. 20.
    Aruna ST, Diwakar S, Jain A, Rajam KS (2005) Surf Eng 21:209CrossRefGoogle Scholar
  21. 21.
    Alirezaei S, Monirvaghefi SM, Salehi M, Saatchi A (2004) Surf Coat Tech 184:170CrossRefGoogle Scholar
  22. 22.
    Alirezaei S, Monirvaghefi S, Salehi M, Saatchi A, Kargosha M (2005) Surf Eng 21:60CrossRefGoogle Scholar
  23. 23.
    Neralla S, Kumar D, Yarmolenko S, Sankar J (2004) Compos B Eng 35:157CrossRefGoogle Scholar
  24. 24.
    Ding XM, Merk N, Ilschner B (1998) J Mater Sci 33:803. doi: 10.1023/A:1004370602721 CrossRefGoogle Scholar
  25. 25.
    Srivastava M, Grips VKW, Rajam KS (2008) Mater Lett 62:3487CrossRefGoogle Scholar
  26. 26.
    Wang S (2003) J Mater Res 18:1566CrossRefGoogle Scholar
  27. 27.
    Thiemig D, Bund A, Talbot JB (2009) Electrochim Acta 54:2491CrossRefGoogle Scholar
  28. 28.
    Feng Q, Li T, Zhang Z, Zhang J, Liu M, Jin J (2007) Surf Coat Tech 201:6247CrossRefGoogle Scholar
  29. 29.
    Du L, Xu B, Dong S, Yang H, Tu W (2004) Wear 257:1058CrossRefGoogle Scholar
  30. 30.
    Xu B (2006) Mater Lett 60:710CrossRefGoogle Scholar
  31. 31.
    Shrestha NK, Sakurada K, Masuko M, Saji T (2001) Surf Coat Tech 140:175CrossRefGoogle Scholar
  32. 32.
    Szczygiel B, Kolodziej M (2005) Electrochim Acta 50:4188CrossRefGoogle Scholar
  33. 33.
    Erler F, Jakob C, Romanus H, Spiess L, Wielage B, Lampke T, Steinhauser S (2003) Electrochim Acta 48:3063CrossRefGoogle Scholar
  34. 34.
    Hamdy AS, Shoeib MA, Hady H, Abdel Salam OF (2007) Surf Coat Tech 202:162CrossRefGoogle Scholar
  35. 35.
    Ciubotariu AC, Benea L, Lakatos-Varsanyi M, Dragan V (2008) Electrochim Acta 53:4557CrossRefGoogle Scholar
  36. 36.
    Vidrine AB, Podlaha EJ (2001) J Appl Electrochem 31:461CrossRefGoogle Scholar
  37. 37.
    Shao I, Vereecken PM, Cammarata RC, Searson PC (2002) J Electrochem Soc 149:C610CrossRefGoogle Scholar
  38. 38.
    Vereecken PM, Shao I, Searson PC (2000) J Electrochem Soc 147:2572CrossRefGoogle Scholar
  39. 39.
    Sautter FK (1963) J Electrochem Soc 110:557CrossRefGoogle Scholar
  40. 40.
    Xiong-Skiba P, Engelhaupt D, Hulguin R, Ramsey B (2005) J Electrochem Soc 152:C571CrossRefGoogle Scholar
  41. 41.
    Aruna S, Selvi T, Ezhil V, Grips V, William K, Rajam KS (2011) J Appl Electrochem 41:461CrossRefGoogle Scholar
  42. 42.
    Aruna S, Grips T, William VK, Rajam KS (2010) J Appl Electrochem 40:2161CrossRefGoogle Scholar
  43. 43.
    Badarulzaman NA, Purwadaria S, Mohamad AA, Ahmad ZA (2009) Ionics 15:603CrossRefGoogle Scholar
  44. 44.
    Corni I (2009) PhD thesis, Imperial College LondonGoogle Scholar
  45. 45.
    Cullity BD (1978) Elements of X-ray diffractions. Addison-Wesley Publishing Company Inc., Reading, Massachusetts. pp. 99–106, 281–295Google Scholar
  46. 46.
    Njau KN, Janssen LJJ (1995) J Appl Electrochem 25:982CrossRefGoogle Scholar
  47. 47.
    Qu NS, Zhu D, Chan KC (2006) Scripta Mater 54:1421CrossRefGoogle Scholar
  48. 48.
    Garcia-Lecina E, Garcia-Urrutia I, Diez JA, Salvo M, Smeacetto F, Gautier G, Seddon R, Martin R (2009) Electrochim Acta 54:2556CrossRefGoogle Scholar
  49. 49.
    Li J, Jiang J, He H, Chen YC (2002) J Mater Sci Lett 21:939CrossRefGoogle Scholar
  50. 50.
    Dong YS, Lin PH, Wang HX (2006) Surf Coat Tech 200:3633CrossRefGoogle Scholar
  51. 51.
    Wakabayashi H, Sato N, Sone M, Takada Y, Yan H, Abe K, Mizumoto K, Ichihara S, Miyata S (2005) Surf Coat Tech 190:200CrossRefGoogle Scholar
  52. 52.
    Degarmo EP, Black JT, Kohser RA (2003) Materials and processes in manufacturing. Wiley, USA, p 794Google Scholar
  53. 53.
    Amblard J, Epelboin I, Froment M, Maurin G (1979) J Appl Electrochem 9:233CrossRefGoogle Scholar
  54. 54.
    Amblard J, Froment M, Maurin G, Spyrellis N, Trevisan-Souteyrand E (1983) Electrochim Acta 28:909CrossRefGoogle Scholar
  55. 55.
    Moti E, Shariat MH, Bahrololoom ME (2008) J Appl Electrochem 38:605CrossRefGoogle Scholar
  56. 56.
    Dai CY, Pan Y, Jiang S, Zhou YC (2004) Surf Rev Lett 11:433CrossRefGoogle Scholar
  57. 57.
    Rashidi AM, Amadeh A (2008) Surf Coat Tech 202:3772CrossRefGoogle Scholar
  58. 58.
    Bozzini B (2000) Mater Chem Phys 66:278CrossRefGoogle Scholar
  59. 59.
    Wang L, Gao Y, Xu T, Xue Q (2006) Mater Chem Phys 99:96CrossRefGoogle Scholar
  60. 60.
    Stroumbouli M, Gyftou P, Pavlatou EA, Spyrellis N (2005) Surf Coat Tech 195:325CrossRefGoogle Scholar
  61. 61.
    Parida G, Chaira D, Chopkar M, Basu Al (2011) Surf Coat Tech 205:4871CrossRefGoogle Scholar
  62. 62.
    Weil R, Cook HC (1962) J Electrochem Soc 109:295CrossRefGoogle Scholar
  63. 63.
    Ebrahimi F, Ahmed Z (2003) J of Appl Electrochem 33:733CrossRefGoogle Scholar
  64. 64.
    Cziraki A, Fogarassy B, Gerocs I, Toth-Kadar E, Bakonyi I (1994) J Mater Sci 29:4771CrossRefGoogle Scholar
  65. 65.
    Banovic SW, Barmak K, Marder AR (1998) J Mater Sci 33:639CrossRefGoogle Scholar
  66. 66.
    Möller A, Hahn H (1999) Nanostruct Mater 12:259CrossRefGoogle Scholar
  67. 67.
    Tu WY, Xu BS, Dong SY, Wang HD, Bin J (2008) J Mater Sci 43:1102. doi: 10.1007/s10853-007-2259-5 CrossRefGoogle Scholar
  68. 68.
    Tu WY, Xu BS, Dong SY, Jiang B, Du LZ (2005) Trans nonferr met soc China 15:889Google Scholar
  69. 69.
    Brandes EA, Goldthorpe D (1967) Metallurgia 76:195Google Scholar
  70. 70.
    Hou F, Wang W, Guo H (2006) Appl Surf Sci 252:3812CrossRefGoogle Scholar
  71. 71.
    Verelst M, Bonino JP, Brieu M, Rousset A (1995) Mater Sci Eng A 191:165CrossRefGoogle Scholar
  72. 72.
    Kuo SL, Chen YC, Ger MD, Hwu WH (2004) Mater Chem Phys 86:5CrossRefGoogle Scholar
  73. 73.
    Burnett PJ, Rickerby DS (1987) Thin Solid Films 154:403CrossRefGoogle Scholar
  74. 74.
    Matsuda K (2008) J Phys D Appl Phys 41:074018CrossRefGoogle Scholar
  75. 75.
    Srivastava M, Grips VKW, Rajam KS (2007) Appl Surf Sci 253:3814CrossRefGoogle Scholar
  76. 76.
    Bazzard R, Boden PJ (1972) Trans Inst Met Finish 50:63Google Scholar
  77. 77.
    Williams RV, Martin PW (1964) Trans Inst Met Finish 42:182Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Department of Materials Science and Engineering, Institute of BiomaterialsUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Faculty of Engineering and the EnvironmentNational Centre for Advanced Tribology at Southampton (nCATS), University of SouthamptonSouthamptonUK

Personalised recommendations