Journal of Materials Science

, Volume 47, Issue 15, pp 5680–5692 | Cite as

Moulded polypropylene foams produced using chemical or physical blowing agents: structure–properties relationship

  • Cristina Saiz-ArroyoEmail author
  • José Antonio de Saja
  • José Ignacio Velasco
  • Miguel Ángel Rodríguez-Pérez
Syntactic & Composite Foams


Polypropylene (PP) foams have become essential items due to their excellent properties. Nevertheless, obtaining net-shaped PP foams with medium relative densities is a complicated issue. In this article, two processes able to produce moulded PP foams in this density range are presented. One of them is based on a modification of the pressure quench foaming method and therefore uses a physical blowing agent (CO2). The second one is the improved compression moulding technique which uses a chemical blowing agent (azodicarbonamide). PP foams with relative densities in the range between 0.25 and 0.6 and cylindrical shape were prepared using these foaming techniques. A common PP grade (instead a highly branched one) was used to obtain the samples, showing, that by combining the appropriate foaming technique, the adequate moulds, suitable blowing agent and proper foaming parameters, net-shaped PP foams with excellent properties can be produced starting from a conventional PP grade. Samples were characterized by analyzing their cellular structure and their mechanical properties. Results have showed that depending on the chosen foaming route isotropic or anisotropic structures with cell sizes ranging from 40 to 350 μm and open cell content in the range between 0 and 65% can be obtained. Moreover, mechanical properties are highly influenced by the production route and chemical composition of the foams. For instance, the stiffer materials at relative densities higher than 0.4 are the ones produced using the chemical blowing agent while at relative densities lower than 0.4 are the ones produced using the physical blowing agent.


Foam Injection Moulding Expansion Ratio Anisotropy Ratio Cell Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial assistance from Spanish Ministry of Science and Education and Feder Program (MAT 2009-14001 CO2-01) as well as Innocash Project (INC-0193) and ESA Project AO-99-075 “Advanced foams unless Microgravity” are gratefully acknowledged.


  1. 1.
    Rodríguez-Pérez MA (2005) Adv Polym Sci 184:1CrossRefGoogle Scholar
  2. 2.
    Eaves D (2004) Handbook of polymeric foams. Rapra Technology, ShawburyGoogle Scholar
  3. 3.
    Klempner D, Sendijarevic V (2004) Handbook of polymeric foams and foam technology, 2nd edn. Hanser Publishers, MunichGoogle Scholar
  4. 4.
    Naguib HE, Park CB, Song SW (2005) Ind Eng Chem Res 44:6685CrossRefGoogle Scholar
  5. 5.
    Doroudiani S, Park CB, Kortschot MT (1996) Polym Eng Sci 36:2645CrossRefGoogle Scholar
  6. 6.
    Naguib HE, Park CB, Panzer U (2002) Polym Eng Sci 42:1481CrossRefGoogle Scholar
  7. 7.
    Naguib HE, Park CB, Reichelt N (2004) J Appl Polym Sci 91:2661CrossRefGoogle Scholar
  8. 8.
    Xu ZM, Jian XL, Liu T, Hu GH, Zhao L, Zhu ZN, Yuan WK (2007) J Supercrit Fluid 41:299CrossRefGoogle Scholar
  9. 9.
    Park CB, Cheung LK (1997) Polym Eng Sci 37:1CrossRefGoogle Scholar
  10. 10.
    Zheng WG, Lee YH, Park CB (2010) J Appl Polym Sci 117:2972Google Scholar
  11. 11.
    Zhai W, Kuboki T, Wang L, Park CB, Lee EK, Naguib HE (2010) Ind Eng Chem Res 49:9834CrossRefGoogle Scholar
  12. 12.
    Antunes M, Velasco JI, Realinho V, Solorzano E (2009) Polym Eng Sci 49:2400CrossRefGoogle Scholar
  13. 13.
    Bhattacharya S, Gupta RK, Jollands M, Bhattacharya SN (2009) Polym Eng Sci 49:2070CrossRefGoogle Scholar
  14. 14.
    Jian XL, Liu T, Xu ZM, Zhao L, Hu GH, Yuan WK (2009) J Supercrit Fluid 48:167CrossRefGoogle Scholar
  15. 15.
    Zhai W, Wang H, Yu J, Dong JY, He J (2008) Polymer 49:3146CrossRefGoogle Scholar
  16. 16.
    Osswald TA, Turn LS, Gramman PJ (2002) Injection moulding handbook. Hanser Publishers, MunichGoogle Scholar
  17. 17.
    Lee JWS, Wang J, Yoon JD, Park CB (2008) Ind Eng Chem Res 47:9457CrossRefGoogle Scholar
  18. 18.
    Touleshkow N, Djoumaliisky S, Kotzev G (1989) Polym Degrad Stab 24:327CrossRefGoogle Scholar
  19. 19.
    Guo MC, Heuzev MC, Carreau PJ (2007) Polym Eng Sci 47:1070CrossRefGoogle Scholar
  20. 20.
    Okamoto KT (2003) Microcellular processing. Hanser Publishers, MunichGoogle Scholar
  21. 21.
    Rodríguez-Pérez MA, Lobos J, Pérez-Muñoz CA, de Saja JA (2008) Cell Polym 27:327Google Scholar
  22. 22.
    Rodríguez-Pérez MA, Lobos J, Pérez-Muñoz CA, de Saja JA (2009) J Cell Plast 45:389CrossRefGoogle Scholar
  23. 23.
    Rodríguez-Pérez MA, Simoes RD, Roman-Lorza S, Alvarez-Lainez M, Montoya-Mesa C, Constantino CJL, de Saja JA (2011) Polym Eng Sci. doi: 10.1002/pen.22046
  24. 24.
    Pinto J, Rodríguez-Pérez MA, de Saja JA (2009) In: XI Reunión del Grupo Especializado de Polímeros (GEP), 10–14 September 2009, Valladolid, SpainGoogle Scholar
  25. 25.
    Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeGoogle Scholar
  26. 26.
    Rodríguez-Pérez MA, Alonso O, Duijsens A, de Saja JA (1998) J Appl Polym Sci 36:2587CrossRefGoogle Scholar
  27. 27.
    Gong W, Gao J, Jiang M, He L, Yu J, Zhu J (2011) J Appl Polym Sci 122:2907CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Cristina Saiz-Arroyo
    • 1
    • 2
    Email author
  • José Antonio de Saja
    • 1
  • José Ignacio Velasco
    • 3
  • Miguel Ángel Rodríguez-Pérez
    • 1
  1. 1.Cellular Materials Laboratory (CellMat), Condensed Matter Physics DepartmentUniversity of ValladolidValladolidSpain
  2. 2.Technological Centre of Miranda de Ebro (CTME)Miranda de EbroSpain
  3. 3.Departament de Ciencia dels Materials i Enginyeria Metal lúrgicaCentre Catalá del Plástic Universitat Politécnica de CatalunyaTerrassaSpain

Personalised recommendations