Journal of Materials Science

, Volume 47, Issue 12, pp 4838–4844 | Cite as

Microstructural heterogeneity in hexagonal close-packed pure Ti processed by high-pressure torsion

  • Y. J. Chen
  • Y. J. Li
  • J. C. Walmsley
  • N. Gao
  • H. J. Roven
  • M. J. Starink
  • T. G. Langdon


Microstructural evolution was studied quantitatively by electron backscattering diffraction in commercial purity Ti processed by high-pressure torsion (HPT) at room temperature. The results show that a heterogeneous microstructure develops during HPT processing with regions of both nanocrystalline grains (<100 nm) and coarse grains (~1–30 μm). Tensile {10\( \overline{1} \)2} twins were observed in the center of the disk after the first turn of HPT. The microhardness near the disk center increases with increasing HPT turns and the hardness after 5 turns is reasonably homogeneous at radial positions >1 mm. The mechanism of grain refinement is characterized by dynamic recrystallization and the continuous formation of a necklace-like array of fine grains gradually consumes the larger grains in subsequent passes.


Equal Channel Angular Pressing Disk Center High Pressure Torsion Commercial Purity Longitudinal Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the Research Council of Norway under the NANOMAT program (Contract No. 182000/S10) and the National Science Foundation of the United States (Grant No. DMR-0855009) (TGL). Mr Jiuwen Zhang (University of Southampton) is gratefully acknowledged for performing some of the HPT processing.


  1. 1.
    Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) J Mater Res 11:1880CrossRefGoogle Scholar
  2. 2.
    Oh-ishi K, Horita Z, Smith DJ, Valiev RZ, Nemoto M, Langdon TG (1999) J Mater Res 14:4200CrossRefGoogle Scholar
  3. 3.
    Zhao YH, Liao XZ, Zhu YT, Horita Z, Langdon TG (2005) Mater Sci Eng A410–411:188Google Scholar
  4. 4.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  5. 5.
    Wei Q, Zhang HT, Schuster BE, Ramesh KT, Valiev RZ, Kecskes LJ, Dowding RJ, Magness L, Cho K (2006) Acta Mater 54:4079CrossRefGoogle Scholar
  6. 6.
    Čížek J, Procházka I, Smola B, Stulíková I, Kužel R, Matěj Z, Cherkaska V, Islamgaliev RK, Kulyasova O (2007) Mater Sci Eng A 462:121CrossRefGoogle Scholar
  7. 7.
    Todaka Y, Sasaki J, Moto T, Umemoto M (2008) Scripta Mater 59:615CrossRefGoogle Scholar
  8. 8.
    Islamgaliev RK, Kazyhanov VU, Shestakova LO, Sharafutdinov AV, Valiev RZ (2008) Mater Sci Eng A 493:190CrossRefGoogle Scholar
  9. 9.
    Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Mater Trans 49:47CrossRefGoogle Scholar
  10. 10.
    Edalati K, Matsubara E, Horita Z (2009) Metall Mater Trans A 40:2079CrossRefGoogle Scholar
  11. 11.
    Wang YB, Louie M, Cao Y, Liao XZ, Li HJ, Ringer SP, Zhu YT (2010) Scripta Mater 62:214CrossRefGoogle Scholar
  12. 12.
    Bonarski BJ, Schafler E, Mingler B, Skrotzki W, Mikulowski B, Zehetbauer MJ (2008) J Mater Sci 43:7513CrossRefGoogle Scholar
  13. 13.
    Chen YJ, Li YJ, Walmsley JC, Dumoulin S, Roven HJ (2010) Metall Mater Trans 41A:787CrossRefGoogle Scholar
  14. 14.
    Stolyarov VV, Zhu YT, Lowe TC, Valiev RZ (2001) Mater Sci Eng A303:82Google Scholar
  15. 15.
    Valiev RZ, Semenova IP, Latysh VV, Rack H, Lowe TC, Petruzelka J, Dluhos L, Hrusak D, Sochova (2008) J Adv Eng Mater 10:B15CrossRefGoogle Scholar
  16. 16.
    Vorhauer A, Pippan R (2004) Scripta Mater 51:921CrossRefGoogle Scholar
  17. 17.
    Serra A, Pond RC, Bacon DJ (1991) Acta Metall Mater 391:469Google Scholar
  18. 18.
    Yapici GG, Karaman I, Luo ZP (2006) Acta Mater 54:3755CrossRefGoogle Scholar
  19. 19.
    Shin DH, Kim I, Kim J, Kim YS, Semiatin SL (2003) Acta Mater 51:983CrossRefGoogle Scholar
  20. 20.
    Li YJ, Chen YJ, Walmsley JC, Mathiesen RH, Dumoulin S, Roven HJ (2010) Scripta Mater 62:443CrossRefGoogle Scholar
  21. 21.
    Zhao X, Fu W, Yang X, Langdon TG (2008) Scripta Mater 59:542CrossRefGoogle Scholar
  22. 22.
    Zhang JW, Gao N, Starink MJ (2010) Mater Sci Eng A527:3472Google Scholar
  23. 23.
    Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solids 56:1186CrossRefGoogle Scholar
  24. 24.
    Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203CrossRefGoogle Scholar
  25. 25.
    Edalati K, Fujioka T, Horita Z (2009) Mater Trans 50:44CrossRefGoogle Scholar
  26. 26.
    Kawasaki M, Figueiredo RB, Langdon TG (2011) Acta Mater 59:308CrossRefGoogle Scholar
  27. 27.
    Edalati K, Horita Z, Langdon TG (2009) Scripta Mater 60:9CrossRefGoogle Scholar
  28. 28.
    Chen YJ, Li YJ, Walmsley JC, Dumoulin S, Roven HJ (2011) Scripta Mater 64:904CrossRefGoogle Scholar
  29. 29.
    Al-Samman T, Gottstein G (2008) Mater Sci Eng A 490:411CrossRefGoogle Scholar
  30. 30.
    Figueiredo RB, Langdon TG (2010) J Mater Sci 45:4827. doi: 10.1007/s10853-010-4589-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Y. J. Chen
    • 1
  • Y. J. Li
    • 2
  • J. C. Walmsley
    • 2
  • N. Gao
    • 3
  • H. J. Roven
    • 1
  • M. J. Starink
    • 3
  • T. G. Langdon
    • 3
    • 4
  1. 1.Department of Materials Science and EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.SINTEF Materials and ChemistryTrondheimNorway
  3. 3.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK
  4. 4.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations