Journal of Materials Science

, Volume 47, Issue 10, pp 4463–4472 | Cite as

Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes

  • A. Mihranyan
  • M. Esmaeili
  • A. Razaq
  • D. Alexeichik
  • T. Lindström


Paper-based conductive electrode materials of polypyrrole (PPy) and nanocellulose (NC) have received much attention lately for applications in non-metal-based energy storage devices, ion exchange, etc. The aim of this study was to study how the primary characteristics of NC raw materials impact and electrochemical properties of conductive NC–PPy composite sheets. Three NC raw materials were used: Cladophora cellulose (NCUU) produced at Uppsala University, Cladophora cellulose (NCFMC) produced at FMC Biopolymer, and microfibrillated cellulose (NCINN) produced at Innventia AB. Composite paper sheets of PPy coated on the substrate NC material were produced. The NC raw materials and the composites were characterized with a battery of techniques to derive their degree of crystallinity, degree of polymerization, specific surface area, pore size distribution, porosity, electron conductivity, charge capacity and tensile properties. It was found that the pore size distribution and overall porosity increase upon coating of NC fibres for all the samples. The charge capacity of the composites was found to decrease with the porosity of the samples. It was further found that the mechanical strength of the pristine NC sheets was largely dependent on the overall porosity, with NCINN having the highest mechanical strength and lowest porosity in the series. The mechanical properties of the composite NC–PPy sheets were significantly diminished as compared with pristine NC sheets because of the impaired H-bonding between fibres and PPy-coated nanofibres. It was concluded that to improve the mechanical properties of PPy–NC sheets, a fraction of additive bare NC fibres is beneficial. Future study may include the effect of both soluble and insoluble additives to improve the mechanical strength of PPy–NC sheets.



Professor Kristofer Gamstedt, Department of Engineering Sciences, Uppsala University, is thanked for his valuable discussions and providing facilities for the mechanical tests. The financial supports from the Swedish Research Council (VR # 621-2009-4626), the Swedish Foundation for Strategic Research (SSF # RMA08-0025), and the Nordic Innovation Center (NICe, # 10014) are also gratefully acknowledged.


  1. 1.
    Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Adv Mater 23:3751. doi: 10.1002/adma.201004134 Google Scholar
  2. 2.
    Naoi K, Morita M (2008) Electrochem Soc Interface 17:44Google Scholar
  3. 3.
    Naoi K, Simon P (2008) Electrochem Soc Interface 17:34Google Scholar
  4. 4.
    Kim JH, Lee YS, Sharma AK, Liu CG (2006) Electrochim Acta 52:1727. doi: 10.1016/j.electacta.2006.02.059 CrossRefGoogle Scholar
  5. 5.
    Snook GA, Kao P, Best AS (2011) J Power Sources 196:1. doi: 10.1016/j.jpowsour.2010.06.084 CrossRefGoogle Scholar
  6. 6.
    Katz HE, Searson PC, Poehler TO (2010) J Mater Res 25:1561. doi: 10.1557/JMR.2010.0201 CrossRefGoogle Scholar
  7. 7.
    Novak P, Muller K, Santhanam KSV, Haas O (1997) Chem Rev 97:207. doi: 10.1021/cr941181o CrossRefGoogle Scholar
  8. 8.
    Liu CH, Meng CZ, Chen LZ, Hu CH, Fan SS (2010) Nano Lett 10:4025. doi: 10.1021/nl1019672 CrossRefGoogle Scholar
  9. 9.
    Qian RE (1993) Conjugated polymers and related materials. Oxford University Press, LondonGoogle Scholar
  10. 10.
    Beneventi D, Sasso C, Zeno E et al (2010) Macromol Mater Eng 295:934. doi: 10.1002/mame.201000148 CrossRefGoogle Scholar
  11. 11.
    Johnston JH, Kelly FM, Moraes J, Borrmann T, Flynn D (2006) Curr Appl Phys 6:587. doi: 10.1016/j.cap.2005.11.067 CrossRefGoogle Scholar
  12. 12.
    Johnston JH, Moraes J, Borrmann T (2005) Synth Met 153:65. doi: 10.1016/j.synthmet.2005.07.138 CrossRefGoogle Scholar
  13. 13.
    Kelly FM, Johnston JH, Borrmann T, Richardson MJ (2007) Eur J Inorg Chem 35:5571. doi: 10.1002/ejic.200700608 CrossRefGoogle Scholar
  14. 14.
    Qian XR, Ding CY, Shen J, An XH (2010) Bioresources 5:303Google Scholar
  15. 15.
    Qian XR, Ding CY, Yu G, An XH (2010) Cellulose 17:1067. doi: 10.1007/s10570-010-9442-6 CrossRefGoogle Scholar
  16. 16.
    Fan LZ, Maier J (2006) Electrochem Commun 8:937. doi: 10.1016/j.elecom.2006.03.035 CrossRefGoogle Scholar
  17. 17.
    Hara S, Zama T, Takashima W, Kaneto K (2004) Synth Met 146:47. doi: 10.1016/j.synthmet.2004.06.021 CrossRefGoogle Scholar
  18. 18.
    Chung HJ, Jung HH, Cho YS et al (2005) Appl Phys Lett 86:213113. doi: 10.1063/1.1940125 CrossRefGoogle Scholar
  19. 19.
    Woo SW, Dokko K, Kanamura K (2008) J Power Sources 185:1589. doi: 10.1016/j.jpowsour.2008.08.035 CrossRefGoogle Scholar
  20. 20.
    Muthulakshmi B, Kalpana D, Pitchumani S, Renganathan NG (2006) J Power Sources 158:1533. doi: 10.1016/j.jpowsour.2005.10.013 CrossRefGoogle Scholar
  21. 21.
    Wu J, Zhou D, Too CO, Wallace GG (2005) Synth Met 155:698. doi: 10.1016/j.synthmet.2005.08.032 CrossRefGoogle Scholar
  22. 22.
    Bhadani R, Baranwal PP, Bhadini SN (2002) J Polym Mater 19:259Google Scholar
  23. 23.
    Varesano A, Antognozzi B, Tonin C (2010) Synth Met 160:1683. doi: 10.1016/j.synthmet.2010.05.041 CrossRefGoogle Scholar
  24. 24.
    Kelly FM, Johnston JH, Borrmann T, Richardson MJ (2008) J Nanosci Nanotechnol 8:1965. doi: 10.1166/jnn.2008.040 CrossRefGoogle Scholar
  25. 25.
    Cucchi I, Boschi A, Arosio C, Bertini F, Freddi G, Catellani M (2009) Synth Met 159:246. doi: 10.1016/j.synthmet.2008.09.012 CrossRefGoogle Scholar
  26. 26.
    Boschi A, Arosio C, Cucchi I, Bertini F, Catellani M, Freddi G (2008) Fiber Polym 9:698. doi: 10.1007/s12221-008-0110-5 CrossRefGoogle Scholar
  27. 27.
    Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Nano Lett 9:3635. doi: 10.1021/Nl901852h CrossRefGoogle Scholar
  28. 28.
    Olsson H, Nyström G, Strømme M, Sjödin M, Nyholm L (2011) Electrochem Commun 13:869. doi: 10.1016/j.elecom.2011.05.024 CrossRefGoogle Scholar
  29. 29.
    Razaq A, Strømme M, Nyholm L, Mihranyan A (2011) ECS Trans 35:135. doi: 10.1149/1.3571986 CrossRefGoogle Scholar
  30. 30.
    Gelin K, Mihranyan A, Razaq A, Nyholm L, Strømme M (2009) Electrochim Acta 54:3394. doi: 10.1016/j.electacta.2009.01.010 CrossRefGoogle Scholar
  31. 31.
    Razaq A, Mihranyan A, Welch K, Nyholm L, Strømme M (2009) J Phys Chem B 113:426. doi: 10.1021/jp806517h CrossRefGoogle Scholar
  32. 32.
    Strømme M, Frenning G, Razaq A, Gelin K, Nyholm L, Mihranyan A (2009) J Phys Chem B 113:4582. doi: 10.1021/jp9002627 CrossRefGoogle Scholar
  33. 33.
    Rubino S, Razaq A, Nyholm L, Strømme M, Leifer K, Mihranyan A (2010) J Phys Chem B 114:13644. doi: 10.1021/jp106317p CrossRefGoogle Scholar
  34. 34.
    Razaq A, Nyström G, Strømme M, Mihranyan A, Nyholm L (2011) PLoS One 6:e29243. doi: 10.1371/journal.pone.0029243 CrossRefGoogle Scholar
  35. 35.
    Mihranyan A (2011) J Appl Polym Sci 119:2449. doi: 10.1002/app.32959 CrossRefGoogle Scholar
  36. 36.
    Tobjörk D, Österbacka R (2011) Adv Mater 23:1935. doi: 10.1002/adma.201004692 CrossRefGoogle Scholar
  37. 37.
    Kang GJ, Ni YG (2008) 2nd International Papermaking and Environment Conference, Tianjin, ChinaGoogle Scholar
  38. 38.
    Weder C, van den Berg O, Capadona JR (2007) Biomacromolecules 8:1353. doi: 10.1021/bm061104q CrossRefGoogle Scholar
  39. 39.
    Eichhorn SJ, Dufresne A, Aranguren M et al (2010) J Mater Sci 45:1. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  40. 40.
    Siro I, Plackett D (2010) Cellulose 17:459. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  41. 41.
    Klemm D, Kramer F, Moritz S et al (2011) Angew Chem Int Ed 50:5438. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  42. 42.
    Mihranyan A, Nyholm L, Garcia Bennett AE, Strømme M (2008) J Phys Chem B 112:12249. doi: 10.1021/jp805123w CrossRefGoogle Scholar
  43. 43.
    Nyström GM, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) J Phys Chem B 114:4178. doi: 10.1021/jp911272m CrossRefGoogle Scholar
  44. 44.
    Liew SY, Thielemans W, Walsh DA (2010) J Phys Chem C 114:17926. doi: 10.1021/jp3698p CrossRefGoogle Scholar
  45. 45.
    Marins JA, Soares BG, Dahmouche K, Ribeiro SJL, Barud H, Bonemer D (2011) Cellulose 18:1285. doi: 10.1007/s10570-011-9565-4 CrossRefGoogle Scholar
  46. 46.
    Hu W, Chen S, Yang Z, Liu L, Wang H (2011) J Phys Chem B 115:8453. doi: 10.1021/jp204422v CrossRefGoogle Scholar
  47. 47.
    Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A (2012) Adv Energy Mater. doi: 10.1002/aenm.201100713 Google Scholar
  48. 48.
    Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A (2012) Adv Energy Mater. doi: 10.1002/aenm.201100713
  49. 49.
    Mihranyan A, Llagostera AP, Karmhag R, Strømme M, Ek R (2004) Int J Pharm 269:433. doi: 10.1016/j.ijpharm.2003.09.030 CrossRefGoogle Scholar
  50. 50.
    Pääkkö M, Ankerfors M, Kosonen H et al (2007) Biomacromolecules 8:1934. doi: 10.1039/b810371b CrossRefGoogle Scholar
  51. 51.
    Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) Text Res J 29:786CrossRefGoogle Scholar
  52. 52.
    ASTM-D-1795-96 (2007) Standard test method for intrinsic viscosity of cellulose. doi: 10.1520/D1795-96R07E01
  53. 53.
    Okita Y, Saito T, Isogai A (2010) Biomacromolecules 11:1696. doi: 10.1021/bm100214b CrossRefGoogle Scholar
  54. 54.
    Driemeier C, Calligaris GA (2011) J Appl Cryst 44:184. doi: 10.1107/S0021889810043955 CrossRefGoogle Scholar
  55. 55.
    Battista OA (1950) Ind Eng Chem 42:502. doi: 10.1021/ie50483a029 CrossRefGoogle Scholar
  56. 56.
    Ek R, Gustafsson C, Nutt A, Iversen T, Nyström C (1998) J Mol Recognit 11:263. doi: 10.1002/(SICI)1099-1352(199812)11:1/6<263:AID-JMR437>3.0.CO;2-G CrossRefGoogle Scholar
  57. 57.
    Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients. Pharmaceutical Press, LondonGoogle Scholar
  58. 58.
    Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Biomacromolecules 9:1579. doi: 10.1021/bm800038n CrossRefGoogle Scholar
  59. 59.
    Sasso C, Bruyant N, Beneventi D et al (2011) Cellulose 18:1455. doi: 10.1007/s10570-011-9583-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. Mihranyan
    • 1
  • M. Esmaeili
    • 1
  • A. Razaq
    • 1
    • 4
  • D. Alexeichik
    • 2
  • T. Lindström
    • 3
  1. 1.Nanotechnology and Functional Materials, Department of Engineering Sciences, Ångström LaboratoryUppsala UniversityUppsalaSweden
  2. 2.FMC BioPolymerNewarkUSA
  3. 3.Innventia ABStockholmSweden
  4. 4.Physics DepartmentCOMSATS Institute of Information TechnologyLahorePakistan

Personalised recommendations