Journal of Materials Science

, Volume 47, Issue 11, pp 4520–4529 | Cite as

Studies on Sr substituted lanthanum indate as mixed ionic conductor



Sr substituted LaInO3 compounds have been prepared by the conventional solid state reaction method. The as-prepared samples are characterized by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential thermal analysis (DTA), thermal expansion coefficient (TEC), and impedance spectroscopy. The XRD analysis of LSI 20 shows the formation of single phase La0.9Sr0.1InO2.95 compound. However, the higher substitution of Sr2+ for La3+ leads to the formation of secondary insulating phase, i.e., SrIn2O4. Sr substitution leads to anionic vacancy which is the possible mechanism for ionic conduction in the given system. Reitveld refinement confirms orthorhombic phase formation in all the samples except LSI 23 (La0.77Sr0.23InO2.89) which is well fitted monoclinic phase. TEC is nearly 9.1 × 10−6 °C−1 in the range of 500–1000 °C in LSI 20 sample. The ionic conductivity is 0.11 mS cm−1 at 800 °C in single phase LSI 20 sample. The solid solubility limit is x = 0.20 which is higher than earlier reported values for similar systems.


Oxygen Vacancy Yttria Stabilize Zirconia Conventional Solid State Reaction Method Solid Solubility Limit Intermediate Temperature Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial assistance for this study was provided by Department of Science and Technology (DST), New Delhi-India through letter No. SR/S2/CMP-0035/2011.


  1. 1.
    Goodenough JB (2003) Annu Rev Mater Res 33:91CrossRefGoogle Scholar
  2. 2.
    Badwal SPS, Foger K (1996) Ceram Int 22:257CrossRefGoogle Scholar
  3. 3.
    Kharton VV, Figueiredo FM, Navarro EN, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) J Mater Sci 36:1105. doi: 10.1023/A:1004817506146 CrossRefGoogle Scholar
  4. 4.
    Azad AM, Larose S, Akbar SA (1994) J Mater Sci 29:4135CrossRefGoogle Scholar
  5. 5.
    Kant R, Singh K, Pandey OP (2010) Ionics 16:277CrossRefGoogle Scholar
  6. 6.
    Sood K, Singh K, Pandey OP (2010) Ionics 16:549CrossRefGoogle Scholar
  7. 7.
    Ishihara T, Matsuda H, Takita Y (1994) J Am Chem Soc 116:3801CrossRefGoogle Scholar
  8. 8.
    Rozumek M, Majewski P, Sauter L, Aldinger F (2003) J Am Ceram Soc 86:1940CrossRefGoogle Scholar
  9. 9.
    Rozumek M, Majewski P, Sauter L, Aldinger F (2004) J Am Ceram Soc 87:662CrossRefGoogle Scholar
  10. 10.
    Rozumek M, Majewski P, Schluckwerder H, Aldinger F (2004) J Am Ceram Soc 87:1795CrossRefGoogle Scholar
  11. 11.
    Raj ES, Skinner SJ, Kilner JA (2005) Solid State Ion 176:1097CrossRefGoogle Scholar
  12. 12.
    Kuang X, Green MK, Niu H, Zajdil P, Dikinson C, Claridge JB, Jantsky L, Rosseinsky MJ (2008) Nat Mater 7:498CrossRefGoogle Scholar
  13. 13.
    Thomas CI, Kuang X, Deng Z, Niu H, Claridge JB, Rosseinsky MJ (2010) Chem Mater 22:2510CrossRefGoogle Scholar
  14. 14.
    Magraso A, Fontaine ML, Larring Y, Bredesen R, Syvertsen GE, Lein HL, Grande T, Huse M, Strandbakke R, Haugsrud R, Norby T (2011) Fuel Cells 11:17CrossRefGoogle Scholar
  15. 15.
    He H, Huang X, Chen L (2001) J Phys Chem Solids 62:701CrossRefGoogle Scholar
  16. 16.
    Lybye D, Poulsen F, Mogensen M (2000) Solid State Ionics 128:91CrossRefGoogle Scholar
  17. 17.
    He H, Huang X, Chen L (2001) Electrochim Acta 46:2871CrossRefGoogle Scholar
  18. 18.
    He H, Huang X, Chen L (2000) Solid State Ion 130:183CrossRefGoogle Scholar
  19. 19.
    Xing J, Shan Z, Li K, Bian J, Lin X, Wang W, Huang F (2008) J Phys Chem Solids 69:23CrossRefGoogle Scholar
  20. 20.
    Nomura K, Takeuchi T, Kageyama H, Miyazaki Y (2003) Solid State Ion 162–163:99CrossRefGoogle Scholar
  21. 21.
    Nomura K, Tanase S (1997) Solid State Ion 98:229CrossRefGoogle Scholar
  22. 22.
    Richter J, Holtappels P, Graule T, Gauckler LJ (2008) Solid State Ion 179:2284CrossRefGoogle Scholar
  23. 23.
    Manthiram A, Kuo JF, Goodenough JB (1993) Solid State Ion 62:225CrossRefGoogle Scholar
  24. 24.
    Matsuda M, Ihara K, Miyake M (2004) Solid State Ion 172:57CrossRefGoogle Scholar
  25. 25.
    Sahoo PS, Panigrahi A, Patri SK, Choudhary RNP (2010) Bull Mater Sci 33:129CrossRefGoogle Scholar
  26. 26.
    MacDonald JR (1987) Impedance Spectroscopy. Wiley, New YorkGoogle Scholar
  27. 27.
    Kimpton J, Randle TH, Drennan J, Auchterlonie G (2001) J Mater Res Bull 36:639CrossRefGoogle Scholar
  28. 28.
    Trejo ER, Tavizon G, Landeros AA (2003) J Phys Chem Solids 64:515CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations