Journal of Materials Science

, Volume 47, Issue 10, pp 4410–4414

Osteoblast cell response to nanoscale SiO2/ZrO2 particulate-reinforced titanium composites and scaffolds by powder metallurgy

Article

Abstract

The strength of porous pure titanium (Ti) scaffold decreases dramatically with the introduction of porosity and might become lower than that of natural bone when with high porosity. To simultaneously meet the requirements of low-elastic modulus and appropriate strength for implant materials, it is necessary to develop new biocompatible Ti-based composites that are stronger than those currently available while providing low-elastic modulus and adequate strength when they are scaffolded into a porous structure. In this study, new particulate-reinforced Ti-based composites with nanoscale oxide particles of SiO2 and ZrO2 were prepared using a powder metallurgical method. The strengths of the new particulate-reinforced titanium composites were found to be significantly higher than that of a pure Ti. Cell culture results revealed that the articulate-reinforced titanium composites showed excellent biocompatibility and cell adhesion. Human osteoblast-like SaOS2 cells grew and spread well on the surfaces of the new titanium composites. The present study illustrated the feasibility of using the particulate-reinforced titanium composites as an orthopaedic implant material.

Keywords

Particulate-reinforced titanium composites Cell response Mechanical property Biocompatibility 

References

  1. 1.
    Long M, Rack HJ (1998) Biomaterials 19:1621CrossRefGoogle Scholar
  2. 2.
    Wang K (1996) Mater Sci Eng A 213:134CrossRefGoogle Scholar
  3. 3.
    Williams DF (1982) Titanium and titanium alloys, biocompatibility of clinical implant materials. CRC Press Inc., FloridaGoogle Scholar
  4. 4.
    Bhola SM, Bhola R, Mishra B, Olson DL (2010) J Mater Sci 45:6179. doi:10.1007/s10853-010-4711-1 CrossRefGoogle Scholar
  5. 5.
    Hsu HC, Tsou HK, Hsu SK, Wu SC, Lai CH, Ho WF (2011) J Mater Sci 46:1369. doi:10.1007/s10853-010-4929-y CrossRefGoogle Scholar
  6. 6.
    Currey JD (2006) Bones structure and mechanics. Princeton University Press, New JerseyGoogle Scholar
  7. 7.
    Li YC, Xiong JY, Wong CS, Hodgson PD, Wen CE (2009) Tissue Eng A 15:3151. doi:10.1089/ten.TEA.2009.0150 CrossRefGoogle Scholar
  8. 8.
    Li YC, Xiong JY, Hodgson PD, Wen CE (2010) J Alloy Compd 494:323CrossRefGoogle Scholar
  9. 9.
    Gibson LG, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Smith AV, Chung DDL (1996) J Mater Sci 31:5961. doi:10.1007/BF01152146 CrossRefGoogle Scholar
  11. 11.
    Liu PS, Liang KM (2001) J Mater Sci 36:5059. doi:10.1023/A:1012483920628 CrossRefGoogle Scholar
  12. 12.
    Wen CE, Yamada Y, Shimojima K, Chino Y, Hosokawa H, Mabuchi M (2002) J Mater Res 17:2633CrossRefGoogle Scholar
  13. 13.
    Li YC, Xiong JY, Lin JG, Forrest M, Hodgson PD, Wen CE (2007) Mater Forum 31:52Google Scholar
  14. 14.
    Liu B, Liu Y, He XY, Tang HP, Chen LF, Huang BY (2007) Metall Mater Trans A 38:2825. doi:10.1007/s11661-007-9329-9 CrossRefGoogle Scholar
  15. 15.
    Esmaeelzadeh S, Simchi A, Lehmhus D (2005) Porous metals and metal foaming technology. Japan Institute of Metals, KyotoGoogle Scholar
  16. 16.
    Ashby MF, Evans A, Fleck NA, Gibson LJ, Hutchinson JW, Wadlry HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, USAGoogle Scholar
  17. 17.
    Ranganath S (1997) J Mater Sci 32(1):1Google Scholar
  18. 18.
    Badini C, Ubertalli G, Puppo D, Fino P (2000) J Mater Sci 35:3903. doi:10.1023/a:1004893700762 CrossRefGoogle Scholar
  19. 19.
    Li BS, Shang JL, Guo JJ, Fu HZ (2004) J Mater Sci 39:1131. doi:10.1023/B:JMSC.0000012962.11500.6d CrossRefGoogle Scholar
  20. 20.
    Ibrahim IA, Mohamed FA, Lavernia EJ (1991) J Mater Sci 26:1137. doi:10.1007/bf00544448 CrossRefGoogle Scholar
  21. 21.
    Liu Y, Chen LF, Tang HP, Liu CT, Liu B, Huang BY (2006) Mater Sci Eng 418:25CrossRefGoogle Scholar
  22. 22.
    Elbir S, Yilmaz S, Toksoy AK, Guden M, Hall IW (2003) J Mater Sci 38:4745. doi:10.1023/a:1027427102837 CrossRefGoogle Scholar
  23. 23.
    Gofrey TMT, Goodwin PS, Ward-Close CM (2000) Adv Eng Mater 2:85. doi:10.1002/(sici)1527-2648(200003)2:3<85:AID-ADEM85>3.0.co;2-u CrossRefGoogle Scholar
  24. 24.
    Canakci A (2011) J Mater Sci 46:2805. doi:10.1007/s10853-010-5156-2 CrossRefGoogle Scholar
  25. 25.
    Hanawa T, Kaga M, Itoh Y, Echizenya T, Oguchi H, Ota M (1992) Biomaterials 13:20CrossRefGoogle Scholar
  26. 26.
    Palmieri A, Pezzetti F, Brunelli G et al (2008) J Mater Sci 19:2471. doi:10.1007/s10856-008-3386-5 CrossRefGoogle Scholar
  27. 27.
    Keceli SA, Alanyali H (2004) Turk J Eng Env Sci 28:49Google Scholar
  28. 28.
    Li YC, Wong CS, Xiong JY, Hodgson PD, Wen CE (2010) J Dent Res 89:493. doi:10.1177/0022034510363675 CrossRefGoogle Scholar
  29. 29.
    Schmalz G, Langer H, Schweikl H (1998) J Dent Res 77:1772CrossRefGoogle Scholar
  30. 30.
    Yamamoto A, Honma RMS (1998) J Biomed Mater Res 39:331CrossRefGoogle Scholar
  31. 31.
    Li YC, Xiong JY, Wong CS, Hodgson PD, Wen CE (2009) Tissue Eng A 15:3152. doi:10.1089/ten.TEA.2009.0150 Google Scholar
  32. 32.
    Wang XJ, Li YC, Xiong JY, Hodgson PD, Wen CE (2009) Acta Biomater 5:3616CrossRefGoogle Scholar
  33. 33.
    Rodan SB, Imai Y, Thiede MA et al (1987) Cancer Res 47:4961Google Scholar
  34. 34.
    International Organization for Standardization (1999) Biological evaluation of medical devices. ISO10993-5 ANSI/AAMI, ArlingtonGoogle Scholar
  35. 35.
    Izquierdo-Barba I, Conde F, Olmo N, Lizarbe MA, Garcia MA, Vallet-Regi M (2006) Acta Biomater 2:445CrossRefGoogle Scholar
  36. 36.
    Lukito D, Xue JM, Wang J (2005) Mater Lett 59:3267CrossRefGoogle Scholar
  37. 37.
    Que W, Sun Z, Zhou Y, Lam YL, Chan YC, Kam CH (2000) Thin Solid Films 359:177CrossRefGoogle Scholar
  38. 38.
    Li YC, Xiong JY, Wong CS, Hodgson PD, Wen CE (2009) Mater Sci Forum 614:85CrossRefGoogle Scholar
  39. 39.
    Geurtsen W (2002) Crit Rev Oral Biol Med 13:71CrossRefGoogle Scholar
  40. 40.
    Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T (2001) Biomaterials 22:1253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute for Technology Research and InnovationDeakin UniversityWaurn PondsAustralia
  2. 2.Faculty of Materials Science and EngineeringKunming University of Science and TechnologyKunmingChina
  3. 3.Faculty of Engineering and Industrial SciencesSwinburne University of TechnologyHawthornAustralia

Personalised recommendations