Journal of Materials Science

, Volume 47, Issue 21, pp 7693–7702

Critical assessment of UO2 classical potentials for thermal conductivity calculations

  • Aleksandr Chernatynskiy
  • Charles Flint
  • Susan B. Sinnott
  • Simon R. Phillpot
First Principles Computations

Abstract

This article reviews the thermal transport properties as predicted by 26 classical interatomic potentials for uranium dioxide, an important nuclear fuel material, determined using a lattice dynamics-based method. The calculations reveal structural instabilities for multiple potentials, as well as the presence of lower energy structures even for potentials in which the fluorite structure is stable. Both rigid atom and shell model potentials are considered, and general trends in their representation of the thermal conductivity are identified. Reviewed classical potentials predict thermal conductivity in the range of ~5–22 W/mK, compared to the experimental value of 8.9 W/mK. The quality of the anharmonicity correction that is based on the correlation between thermal expansion and thermal conductivity is investigated, and it found to generally improve thermal conductivities results.

References

  1. 1.
    Verrall R, Lucuta P (1996) J Nucl Mater 228(2):251CrossRefGoogle Scholar
  2. 2.
    Hutchings MT (1987) J Chem Soc Faraday Trans 2(83):1083Google Scholar
  3. 3.
    Martin D (1988) J Nucl Mater 152(2–3):94CrossRefGoogle Scholar
  4. 4.
    Kang KH, Ryu HJ, Song KC, Yang MS (2002) J Nucl Mater 301(2–3):242Google Scholar
  5. 5.
    Pillai C, George A (1993) J Nucl Mater 200(1):78CrossRefGoogle Scholar
  6. 6.
    Lucuta PG, Matzke H, Verrall RA (1995) J Nucl Mater 223(1):51CrossRefGoogle Scholar
  7. 7.
    Ronchi C, Sheindlin M, Musella M, Hyland GJ (1999) J Appl Phys 85(2):776CrossRefGoogle Scholar
  8. 8.
    Dudarev SL, Botton GA, Savrasov SY, Szotek Z, Temmerman WM, Sutton AP (1998) Phys Status Solid (A) 166(1):429CrossRefGoogle Scholar
  9. 9.
    Kudin KN, Scuseria GE, Martin RL (2002) Phys Rev Lett 89:266402CrossRefGoogle Scholar
  10. 10.
    Sanati M, Albers RC, Lookman T, Saxena A (2011) Phys Rev B 84:014116CrossRefGoogle Scholar
  11. 11.
    Yu J, Devanathan R, Weber WJ (2009) J Phys: Condens Matter 21(43):435401CrossRefGoogle Scholar
  12. 12.
    Catlow CRA (1977) P Roy Soc A-Math Phy 353(1675):533CrossRefGoogle Scholar
  13. 13.
    van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) J Phys Chem A 105(41):9396CrossRefGoogle Scholar
  14. 14.
    Shan T-R, Devine BD, Hawkins JM, Asthagiri A, Phillpot SR, Sinnott SB (2010) Phys Rev B 82(23):235302CrossRefGoogle Scholar
  15. 15.
    Tiwary P, van de Walle A, Grønbech-Jensen N (2009) Phys Rev B 80:174302CrossRefGoogle Scholar
  16. 16.
    Govers K, Lemehov S, Hou M, Verwerft M (2007) J Nucl Mater 366(1–2):161CrossRefGoogle Scholar
  17. 17.
    Skomurski FN, Ewing RC, Rohl AL, Gale JD, Becker U (2006) Am Mineral 91(11–12):1761CrossRefGoogle Scholar
  18. 18.
    Goel P, Choudhury N, Chaplot S (2008) J Nucl Mater 377(3):438CrossRefGoogle Scholar
  19. 19.
    Yakub E, Ronchi C, Staicu D (2010) J Nucl Mater 400(3):189CrossRefGoogle Scholar
  20. 20.
    Read MS, Jackson RA (2010) J Nucl Mater 406(3):293CrossRefGoogle Scholar
  21. 21.
    Lindan P, Gillan M (1991) J Phys: Condens Matter 3(22):3929CrossRefGoogle Scholar
  22. 22.
    Motoyama S, Ichikawa Y, Hiwatari Y, Oe A (1999) Phys Rev B 60:292CrossRefGoogle Scholar
  23. 23.
    Yamada K, Kurosaki K, Uno M, Yamanaka S (2000) J Alloys Compd 307:1CrossRefGoogle Scholar
  24. 24.
    Arima T, Yamasaki S, Inagaki Y, Idemitsu K (2005) J Alloys Compd 400(1–2):43CrossRefGoogle Scholar
  25. 25.
    Watanabe T, Sinnott SB, Tulenko JS, Grimes RW, Schelling PK, Phillpot SR (2008) J Nucl Mater 375(3):388CrossRefGoogle Scholar
  26. 26.
    Ward A, Broido DA, Stewart DA, Deinzer G (2009) Phys Rev B 80(12):125203CrossRefGoogle Scholar
  27. 27.
    Chernatynskiy A, Phillpot SR (2010) Phys Rev B 82(13):134301CrossRefGoogle Scholar
  28. 28.
    Chernatynskiy A, Turney JE, McGaughey AJH, Amon CH, Phillpot SR (2011) J Am Ceram Soc 94(10):3523CrossRefGoogle Scholar
  29. 29.
    Maradudin AA, Fein AE (1962) Phys Rev 128:2589CrossRefGoogle Scholar
  30. 30.
    Turney JE, McGaughey AJH, Amon CH (2009) Phys Rev B 79(22):224305CrossRefGoogle Scholar
  31. 31.
    Krishnan R, Srinivasan R, Devanarayanan S (1979) In: Thermal expansion of crystals. Franklin Book Company, New YorkGoogle Scholar
  32. 32.
    Dick BG, Overhauser AW (1958) Phys Rev 112(1):90CrossRefGoogle Scholar
  33. 33.
    Oitmaa J (1967) Aust J Phys 20(5):495CrossRefGoogle Scholar
  34. 34.
    Desai TG, Uberuaga BP (2009) Scr Mater 60(10):878CrossRefGoogle Scholar
  35. 35.
    Fink JK (2000) J Nucl Mater 279(1):1CrossRefGoogle Scholar
  36. 36.
    Klemens P (1958) In: Solid state physics, vol. 7. Academic Press, New York, p 1CrossRefGoogle Scholar
  37. 37.
    Roufosse M, Klemens PG (1973) Phys Rev B 7:5379CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Aleksandr Chernatynskiy
    • 1
  • Charles Flint
    • 1
    • 2
  • Susan B. Sinnott
    • 1
  • Simon R. Phillpot
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Materials Science and EngineeringUC BerkeleyBerkeleyUSA

Personalised recommendations