Journal of Materials Science

, Volume 47, Issue 8, pp 3706–3712 | Cite as

Density and thermal expansion of liquid Al–Si alloys

  • Julianna Schmitz
  • Bengt Hallstedt
  • Jürgen Brillo
  • Ivan Egry
  • Michael Schick


The density of Al-rich liquid Al–Si alloys was measured contactlessly on electromagnetically levitated samples using optical dilatometry. Data were obtained for samples covering compositions up to 50 at.% Si and in a temperature range between 650 and 1500 °C. The densities can be described as linear functions of temperature with negative slopes. Moreover, they increase monotonically with an increase of Si concentration. In a temperature range between 1100 and 1400 °C, it can be deduced from the composition dependence of the density that virtually no excess volume arises during alloying of the pure elements. For lower temperatures an excess volume is discussed, considering the temperature dependence of Si density literature data. The density data were integrated in a thermodynamic model description of the Al–Si system. In this way volume changes during solidification and changes in phase equilibria as function of pressure can be calculated.



Within the framework of PAK 461 this study was financially supported by the “Deutsche Forschungsgemeinschaft” under grant numbers EG 93/8-1 and HA 5382/3-1. This is gratefully acknowledged. Further, we would like to thank our cooperation partners Rainer Schmid-Fetzer, Joachim Gröbner, Markus Rettenmayr, and Andrea Löffler for sharing their expertise and for the preparation of high quality samples.


  1. 1.
    Shivkumar S, Wang L, Keller C (1994) Z Metallkd 85(6):394Google Scholar
  2. 2.
    Ge LL, Liu RP, Li G, Ma MZ, Wang WK (2004) Mater Sci Eng A 385:128Google Scholar
  3. 3.
    Pierantoni M, Gremaud M, Magnin P, Stoll D, Kurz W (1992) Acta Metall Mater 40(7):1637CrossRefGoogle Scholar
  4. 4.
    Nikanorov SP, Volkov MP, Gurina VN, Burenkova YuA, Derkachenko LI, Kardashev BK, Regel LL, Wilcox WR (2005) Mater Sci Eng A 390:63CrossRefGoogle Scholar
  5. 5.
    Griffiths WD, Xiao L, McCartney DG (1996) Mater Sci Eng A205:31Google Scholar
  6. 6.
    Kanibolotsky DS, Bieloborodova OA, Kotova NV, Lisnyak VV (2002) J Therm Anal Cal 70:975CrossRefGoogle Scholar
  7. 7.
    Bros JP, Eslami H, Gaune P (1981) Ber Bunsenges 85:333Google Scholar
  8. 8.
    Körber F, Oelsen W (1937) Mitt Kaiser-Wilhelm Inst Eisenforsch 19:131Google Scholar
  9. 9.
    N.V. Gizenko, B.I. Emlin, S.N. Kilesso, M.I. Gasik and A.L. Zavyalov (1983) Izv. Akad Nauk SSSR Met. 1:33–35 Engl. TranslGoogle Scholar
  10. 10.
    Berthon O, Petot-Ervas G, Petot C, Desré P (1969) C R Acad Sci Paris 268C:1939Google Scholar
  11. 11.
    Schaefer SC, Gokcen NA (1979) High Temp Sci 11:31Google Scholar
  12. 12.
    Bonnet M, Rogez J, Castanet R (1989) Thermochinmica Acta 155:9Google Scholar
  13. 13.
    Kanibolotsky DS, Bieloborodova OA, Kotova NV, Lisnyak VV (2004) Thermochimica Acta 412:39CrossRefGoogle Scholar
  14. 14.
    Witusievicz VT, Arpshofen I, Seifert H-J, Aldinger F (2000) J Alloys Compounds 297:176CrossRefGoogle Scholar
  15. 15.
    Gabathuler JP, Steeb S, Lamparter P (1979) Z Naturforsch 34a:1305Google Scholar
  16. 16.
    Kéita NM, Steinemann S (1978) J Phys C: Solid State Phys 11:4635CrossRefGoogle Scholar
  17. 17.
    Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics: the calphad method. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. 18.
    Brillo J, Egry I, Westphal J (2008) Int J Mater Res 99(2):162CrossRefGoogle Scholar
  19. 19.
    Schmitz J, Brillo J, Egry I, Schmidt-Fetzer R (2009) Int J Mater Res 100(11):1529CrossRefGoogle Scholar
  20. 20.
    Lüdecke C, Lüdecke D (2000) Thermodynamik. Springer, HeidelbergCrossRefGoogle Scholar
  21. 21.
    Porter AW (1920) Trans Faraday Soc 16:336CrossRefGoogle Scholar
  22. 22.
    Feufel H, Gödecke T, Lukas HL, Sommer F (1997) J Alloys Compd 247:31CrossRefGoogle Scholar
  23. 23.
    Hallstedt B (2007) Calphad 31:292CrossRefGoogle Scholar
  24. 24.
    Assael MJ, Kakosimos K, Banish RM, Brillo J, Egry I, Brooks R, Quested PN, Mills KC, Nagashima A, Sato Y, Wakeham WA (2006) J Phys Chem Ref Data 35:285CrossRefGoogle Scholar
  25. 25.
    Brillo J, Egry I (2003) Int J Thermophys 24:1155CrossRefGoogle Scholar
  26. 26.
    Brillo J, Egry I, Giffard HS, Patti A (2004) Int J Thermophys 25:1881CrossRefGoogle Scholar
  27. 27.
    Brillo J, Lohöfer G, Schmidt-Hohagen F, Schneider S (2006) Int J Mat Prod Tech 26:247Google Scholar
  28. 28.
    Krishnan S, Hansen GP, Hauge RH, Margrave JL (1990) High Temp Sci 29:17Google Scholar
  29. 29.
    Brillo J, Egry I, Ho I (2006) Int J Thermophys 27:494CrossRefGoogle Scholar
  30. 30.
    Watanabe M, Adachi M, Morishita T, Higuchi K, Kobatake H, Fukuyama H (2007) Faraday Discuss 136:279CrossRefGoogle Scholar
  31. 31.
    Andersson JO, Helander T, Höglund L, Shi P, Sundman B (2002) Calphad 28:273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Julianna Schmitz
    • 1
  • Bengt Hallstedt
    • 2
  • Jürgen Brillo
    • 1
  • Ivan Egry
    • 1
  • Michael Schick
    • 2
  1. 1.Institut für Materialphysik im WeltraumDeutsches Zentrum für Luft- und Raumfahrt (DLR)CologneGermany
  2. 2.Materials ChemistryRWTH Aachen UniversityAachenGermany

Personalised recommendations