Journal of Materials Science

, Volume 47, Issue 7, pp 3344–3349

Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes

  • P. Selvin Thomas
  • Adedigba A. Abdullateef
  • Mamdouh A. Al-Harthi
  • Muataz A. Atieh
  • S. K. De
  • Mostafizur Rahaman
  • T. K. Chaki
  • D. Khastgir
  • Sri Bandyopadhyay
Article

Abstract

This article reports the results of studies on the effect of 1-octadecanol (abbreviated as C18) functionalization of carbon nanotubes (CNT) on electrical properties of natural rubber (NR) composites. Dispersion of CNT in NR matrix was studied by transmission electron microscopy (TEM) and electrical resistivity measurements. Fourier transform infra red spectrometry (FTIR) indicates characteristic peaks for ether and hydrocarbon in the case of C18 functionalized CNT. Dielectric constant increases with respect to the filler loading for both unmodified and functionalized CNTs, the effect being less pronounced in the case of functionalized CNT due to its better dispersion in the matrix. Stress–strain plots suggest that the mechanical integrity of the NR/CNT composites, measured in terms of tensile strength, increases on C18 functionalization of the nanofiller. TEM reveals that the functionalization causes improvement in dispersion of CNT in NR matrix, which is corroborated by the increase in electrical resistivity in the case of the functionalized CNT/NR composites.

References

  1. 1.
    De SK, White JR (2001) Rubber technologist’s handbook. Smithers Rapra Technology, New YorkGoogle Scholar
  2. 2.
    Blow CM, Hepburn C (1982) Rubber technology and manufacture. Buttenvorths, LondonGoogle Scholar
  3. 3.
    Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito OJ (1993) Mater Res 8:1174CrossRefGoogle Scholar
  4. 4.
    Yano K, Usuki A (1993) J Polym Sci Part A: Polym Chem 31:2493CrossRefGoogle Scholar
  5. 5.
    Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Compos Sci Technol 62:1327CrossRefGoogle Scholar
  6. 6.
    Wong EW, Sheehan PE, Lieber CM (1997) Science 277:1971CrossRefGoogle Scholar
  7. 7.
    Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH (2007) Compos Sci Technol 67:1813CrossRefGoogle Scholar
  8. 8.
    Fakhru’l-Razi A, Atieh MA, Girun N, Chuah TG, El-Sadig M, Biak DRA (2006) Compos Struct 75:496CrossRefGoogle Scholar
  9. 9.
    Zhan YH, Liu GQ, Xia HS, Yan N (2011) Plast Rubber Compos 40:32CrossRefGoogle Scholar
  10. 10.
    Lim ST, Hyun YH, Choi AJ, Jhon MS (2002) Chem Mater 14:1839CrossRefGoogle Scholar
  11. 11.
    Varghese S, Kocsis JK (2003) Polymer 44:4921CrossRefGoogle Scholar
  12. 12.
    Joly S, Gernaud G, Ollitrault R, Bokobza L, Mark JE (2002) Chem Mater 14:4202CrossRefGoogle Scholar
  13. 13.
    Bokobza L, Rahmani M, Belin C, Bruneel J, El-Bounia N (2008) J Polym Sci B: Polym Phys 46:1939CrossRefGoogle Scholar
  14. 14.
    Sui G, Zhong WH, Yang XP, Yu YH (2008) Mater Sci Eng A 485:524CrossRefGoogle Scholar
  15. 15.
    Rahaman M, Chaki TK, Khastgir D (2011) J Mater Sci 46:3989. doi:10.1007/s10853-011-5326-x CrossRefGoogle Scholar
  16. 16.
    Sohi NJS, Rahaman M, Khastgir D (2011) Polym Compos 32:1148CrossRefGoogle Scholar
  17. 17.
    Sohi NJS, Bhadra S, Khastgir D (2011) Carbon 49:1349CrossRefGoogle Scholar
  18. 18.
    Yang K, Gu M, Guo Y, Pan X, Mu G (2009) Carbon 47:1723CrossRefGoogle Scholar
  19. 19.
    Zhou X, Zhu Y, Liang J (2007) Mater Res Bul 42:456CrossRefGoogle Scholar
  20. 20.
    Vaisman L, Wagner HD, Marom G (2006) Adv Colloid Interface Sci 128–130:37CrossRefGoogle Scholar
  21. 21.
    Girei SA, Thomas SP, Atieh MA, Mezghani K, De SK, Bandyopadhyay S, Al-Juhani AA (2011) J Thermoplastic Compos Mater. doi:10.1177/0892705711406159
  22. 22.
    Socrates G (1980) Infrared characteristic group frequencies. Wiley, BristolGoogle Scholar
  23. 23.
    Abuilaiwi FA, Laoui T, Al-Harthi M, Atieh MA (2010) Arab J Sci Eng 35:37Google Scholar
  24. 24.
    Bauhofer W, Kovacs JZ (2009) Compos Sci Technol 69:1486CrossRefGoogle Scholar
  25. 25.
    Mott NF, Davis EA (1979) Electronic properties in non-crystalline materials. Oxford, ClarendonGoogle Scholar
  26. 26.
    Jiang MJ, Dang ZM, Xu HP (2007) Appl Phys Lett 90(4):42914-1. doi:10.1063/1.2432232 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • P. Selvin Thomas
    • 1
  • Adedigba A. Abdullateef
    • 1
  • Mamdouh A. Al-Harthi
    • 1
    • 2
  • Muataz A. Atieh
    • 1
    • 2
  • S. K. De
    • 1
  • Mostafizur Rahaman
    • 3
  • T. K. Chaki
    • 3
  • D. Khastgir
    • 3
  • Sri Bandyopadhyay
    • 4
  1. 1.Department of Chemical EngineeringKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia
  2. 2.Center of Excellence in Nanotechnology (CENT)King Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia
  3. 3.Rubber Technology CenterIndian Institute of Technology KharagpurWest BengalIndia
  4. 4.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations