Advertisement

Journal of Materials Science

, Volume 47, Issue 7, pp 3305–3314 | Cite as

Influence of filler/reinforcing agent and post-curing on the flexural properties of woven and unidirectional glass fiber-reinforced composites

  • G. Furtos
  • L. Silaghi-Dumitrescu
  • M. Moldovan
  • B. Baldea
  • R. Trusca
  • C. Prejmerean
Article

Abstract

The aim of this study is to investigate the reinforcing effect of woven and unidirectional glass fibers and the effect of post-curing on the flexural strength and flexural modulus of glass fiber-reinforced composites. A series of composites containing 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane and triethyleneglycol dimethacrylate matrices and different reinforcements of unidirectional or woven glass fibers were prepared. The samples, 25 × 2 × 2 mm, were cured with a halogen curing lamp, followed by additional curing by thermal treatment at 135 ± 5 °C temperature and 60 psi pressure. Samples were tested before and after post-curing in order to determine the flexural strength and flexural modulus. The degree of reinforcement with glass fibers was varied between 14 and 57 wt% or 7.64 and 38.44 vol% by changing the number of unidirectional bundles or woven glass fiber bands in the composites, respectively. The obtained flexural strength values were in the range of 95.20–552.31 Mpa; the flexural modulus ranged between 2.17 and 14.7 GPa. The highest flexural strength and flexural modulus values were recorded for samples with unidirectional glass fibers. The mechanical qualities of the glass fibers-reinforced composites increased after post-curing treatment. Increasing of the glass fiber amount in the experimental composites improves both flexural strength and modulus. SEM micrographs of fractured composites indicate a strong interfacial interaction between the glass fibers and the polymer matrix.

Keywords

Glass Fiber Flexural Strength Flexural Modulus DMAEMA Unidirectional Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by CNCSIS—UEFISCDI, project number PNII—IDEI 1047/2008. One of the authors (G. F.) thanks the Babes-Bolyai University of Cluj-Napoca for the financial support. This study was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007–2013, co-financed by the European Social Fund, under the project number POSDRU 89/1.5/S/60189 with the title “Postdoctoral Programs for Sustainable Development in a Knowledge Based Society”. The authors thank the COST Action TD0903 for COST meeting support.

References

  1. 1.
    Behr M, Rosentritt M, Handel G (2003) Int J Prosthodont 16:239Google Scholar
  2. 2.
    Hoeppner MG, Fonseca RB, Pfau EA, Justo FR, Fávero A, Bremm LL (2011) Quintessence Int 42:113Google Scholar
  3. 3.
    Kumbuloglu O, Aksoy G, User A (2008) J Adhes Dent 10:67Google Scholar
  4. 4.
    Karaman AI, Kir N, Belli S (2002) Am J Orthod Dentofacial Orthop 121:650CrossRefGoogle Scholar
  5. 5.
    Ardeshna AP (2011) Am J Orthod Dentofacial Orthop 139:761CrossRefGoogle Scholar
  6. 6.
    Le Bell AM, Tanner J, Lassila LV, Kangasniemi I, Vallittu PK (2003) Int J Prosthodont 16:403Google Scholar
  7. 7.
    Kono T, Yoshinari M, Takemoto S, Hattori M, Kawada E, Oda Y (2009) Dent Mater J 28:537CrossRefGoogle Scholar
  8. 8.
    Freilich MA, Duncan JP, Alarcon EK, Eckrote KA, Goldberg AJ (2002) J Prosthet Dent 88:449CrossRefGoogle Scholar
  9. 9.
    Ballo A, Lassila LV, Narhi T, Vallittu PK (2008) J Contemp Dent Pract 9:41Google Scholar
  10. 10.
    Ballo AM, Akca EA, Ozen T, Lassila L, Vallittu PK, Närhi TO (2009) Clin Oral Implants Res 20:608Google Scholar
  11. 11.
    Vallittu PK (1996) J Prosthodont 5:115CrossRefGoogle Scholar
  12. 12.
    Karacaer O, Polat TN, Tezvergil A, Lassila LV, Vallittu PK (2003) J Prosthet Dent 90:385CrossRefGoogle Scholar
  13. 13.
    Kanie T, Fujii K, Arikawa H, Inoue K (2000) Dent Mater 16:150CrossRefGoogle Scholar
  14. 14.
    Kim SH, Watts DC (2004) Int J Prosthodont 17:318Google Scholar
  15. 15.
    DeBoer J, Vermilyea SG, Brady RE (1984) J Prosthet Dent 51:119CrossRefGoogle Scholar
  16. 16.
    Vallittu PK, Narva K (1997) Int J Prosthodont 10:142Google Scholar
  17. 17.
    Vallittu PK (1997) Dent Mater 13:381CrossRefGoogle Scholar
  18. 18.
    Kanie T, Arikawa H, Fujii K, Ban S (2004) Dent Mater 20:709CrossRefGoogle Scholar
  19. 19.
    Larson WR, Dixon DL, Aquilino SA, Clancy JM (1991) J Prosthet Dent 66:816CrossRefGoogle Scholar
  20. 20.
    Nandini S (2010) J Conserv Dent 13:184CrossRefGoogle Scholar
  21. 21.
    Ferracane JL, Condon JR (1992) Dent Mater 8:290CrossRefGoogle Scholar
  22. 22.
    ISO standard 4049 (2000) In: International organization for standardisation. Printed in Switzerland, p. 15. http://webstore.ansi.org. Accessed Nov 2011
  23. 23.
    Wallenberger FT, Weston N (2003) Natural fibers, plastics and composites. Springer, New York, p 258Google Scholar
  24. 24.
    Garoushi SK, Lassila LV, Vallittu PK (2006) J Contemp Dent Pract 7:10Google Scholar
  25. 25.
    Vazquez A, Ambrustolo M, Moschiar SM, Reboredo AMM, Gcrard JF (1998) Compos Sci Technol 58:549CrossRefGoogle Scholar
  26. 26.
    Vallittu PK, Lassila VP, Lappalainen R (1994) J Prosthet Dent 71:607CrossRefGoogle Scholar
  27. 27.
    Stipho HD (1998) J Prosthet Dent 80:546CrossRefGoogle Scholar
  28. 28.
    Ladizesky NH, Cheng YY, Chow TW, Ward IM (1993) Dent Mater 9:128CrossRefGoogle Scholar
  29. 29.
    Dyer R, Lassila V, Jokinen M, Vallittu K (2004) Dent Mater 20:947CrossRefGoogle Scholar
  30. 30.
    Freilich MA (2000) Fiber reinforced composites in clinical dentistry quintessence Pub., ChicagoGoogle Scholar
  31. 31.
    Vallittu K (1995) J Oral Rehabil 22:257CrossRefGoogle Scholar
  32. 32.
    Miettinen VM, Narva KK, Vallittu PK (1999) Biomaterials 20:1187CrossRefGoogle Scholar
  33. 33.
    Vallittu PK (1997) J Oral Rehabil 24:124CrossRefGoogle Scholar
  34. 34.
    Marei MK (1999) J Prosthodont 8:18CrossRefGoogle Scholar
  35. 35.
    Ramos V Jr, Runyan DA, Christensen LC (1996) J Prosthet Dent 76:94CrossRefGoogle Scholar
  36. 36.
    Vallittu PK (1999) J Prosthet Dent 81:318CrossRefGoogle Scholar
  37. 37.
    Vishu S (1998) Handbook of plastic testing technology, 2nd edn. John Wiley, New York, p 546Google Scholar
  38. 38.
    Hull D, Clyne TW (2002) An introduction to composite materials. Cambridge University Press, CambridgeGoogle Scholar
  39. 39.
    Vallittu PK (1998) J Prosthodont 7:170CrossRefGoogle Scholar
  40. 40.
    Karbhari VM, Strassler H (2007) Dent Mater 23:960CrossRefGoogle Scholar
  41. 41.
    Sperling LH (2005) Introduction to physical polymer science, 4th edn. Wiley, New JerseyCrossRefGoogle Scholar
  42. 42.
    Vakiparta M, Puska M, Vallittu PK (2006) Acta Biomater 2:29CrossRefGoogle Scholar
  43. 43.
    Bagis YH, Rueggeberg FA (2000) Dent Mater 16:244CrossRefGoogle Scholar
  44. 44.
    Sedda M, Papacchini F, Salonna P, Borracchini A, Ferrari M (2010) Eur J Prosthodont Restor Dent 18:102Google Scholar
  45. 45.
    Garoushi S, Vallittu PK, Lassila LV (2007) Dent Mater 23:1356CrossRefGoogle Scholar
  46. 46.
    Nagata K, Takahashi H, Ona M, Hosomi H, Wakabayashi N, Igarashi Y (2009) Dent Mater J 28:649CrossRefGoogle Scholar
  47. 47.
    “GLASSIX” glass fiber post leaflet (2011) http://www.nordin-dental.com/index.php/prod/post-systems/glassix.html. Accessed September 2011
  48. 48.
    Vallittu PK (2001) In: The second international symposium on fibre-reinforced plastics in dentistry, NijmegenGoogle Scholar
  49. 49.
    Lee SM, Zahuta P (1991) J Compos Mater 25:205Google Scholar
  50. 50.
    Gamstedt EK, Östlund S (2001) Appl Compos Mater 8:385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. Furtos
    • 1
    • 2
  • L. Silaghi-Dumitrescu
    • 1
  • M. Moldovan
    • 1
  • B. Baldea
    • 3
  • R. Trusca
    • 4
  • C. Prejmerean
    • 1
  1. 1.Department of Dental MaterialsRaluca Ripan Institute of Research in Chemistry, Babes-Bolyai UniversityCluj-NapocaRomania
  2. 2.Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania
  3. 3.Faculty of Dental MedicineTimisoaraRomania
  4. 4.METAV Research & DevelopmentBucharestRomania

Personalised recommendations