Advertisement

Journal of Materials Science

, Volume 47, Issue 7, pp 3265–3271 | Cite as

The role of low-angle grain boundaries in multi-temperature equal channel angular pressing of Mg–3Al–1Zn alloy

  • Peter Molnár
  • Aleš Jäger
  • Pavel Lejček
Article

Abstract

Equal channel angular pressing was used to process an AZ31B magnesium alloy (nominally Mg–3Al–1Zn in wt%) at temperatures decreasing from 200 to 150 °C. The resulting microstructure was characterized by electron backscattered diffraction to reveal the role of low-angle grain boundaries in grain refinement. It was found that low-angle grain boundaries with misorientation angles lower than 5° are surrounded by regions of increased strain gradients, which can stimulate the generation of non-basal slip dislocations during the equal channel angular pressing at temperatures of approximately 150 °C. The strain gradients in the vicinity of the grain boundaries with misorientation angles in the range of 5°–10° were less frequent or were completely absent for high-angle grain boundaries with misorientation angles higher than 10°. This article also discusses the importance of low-angle grain boundaries for the generation of non-basal 〈c+a〉 dislocations needed for successful equal channel angular pressing of AZ31B at temperature of 150 °C.

Keywords

Slip System Strain Gradient Equal Channel Angular Pressing Misorientation Angle Critical Resolve Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors acknowledge financial support from the Academy of Sciences of the Czech Republic (Grant KAN300100801).

References

  1. 1.
    Von Mises R (1928) Z Angew Math Mech 8:161CrossRefGoogle Scholar
  2. 2.
    Yoo MH (1981) Metall Mater Trans A 12:409CrossRefGoogle Scholar
  3. 3.
    Reed-Hill RE, Robertson WD (1957) Acta Metall 5:728CrossRefGoogle Scholar
  4. 4.
    Ando S, Nakanuta K, Takashima K, Tonda H (1992) J Jpn Ind Light metal 42:765CrossRefGoogle Scholar
  5. 5.
    Agnew SR, Duygulu O (2005) Int J Plasticity 21:61CrossRefGoogle Scholar
  6. 6.
    Hutchinson WB, Barnett MR (2010) Scr Mat 63:737CrossRefGoogle Scholar
  7. 7.
    Biswas S, Dhinwal SS, Suwas S (2010) Acta Mat 58:3247CrossRefGoogle Scholar
  8. 8.
    Ding SX, Chány CP, Kao PW (2009) Metall Mater Trans A 40:415CrossRefGoogle Scholar
  9. 9.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  10. 10.
    Cetlin RP, Aguilar MTP, Figueiredo RB, Langdon TG (2010) J Mater Sci 45:4561. doi: 10.1007/s10853-010-4384-9 CrossRefGoogle Scholar
  11. 11.
    Stoica GM, Fielden DE, McDaniels R, Liu Y, Huang B, Liaw PK, Xu C, Langdon TG (2005) Mater Sci Eng A 410–411:239Google Scholar
  12. 12.
    Ostapovets A, Šedá P, Jäger A, Lejček P (2011) Scr Mater 64:470CrossRefGoogle Scholar
  13. 13.
    Beausir B, Suwas S, Toth LS, Neale KW, Fundenberger JJ (2008) Acta Mater 56:200CrossRefGoogle Scholar
  14. 14.
    Brewer LN, Field DP, Merriman CC (2009) In: Kumar M, Adams BL, Field DP, Schwartz AJ (eds) Electron backscatter diffraction in materials science. Springer, New York, p 251CrossRefGoogle Scholar
  15. 15.
    Li H, Hsu E, Szpunar J, Utsunomiya H, Sakai T (2008) J Mater Sci 43:7148. doi: 10.1007/s10853-008-3021-3 CrossRefGoogle Scholar
  16. 16.
    Wright SL, Field DP, Dingley DJ (2000) In: Kumar M, Adams BL, Schwartz AJ (eds) Electron backscatter diffraction in materials science. Kluwer Academic/Plenum Publisher, New York, p 141Google Scholar
  17. 17.
    Kubin LP, Mortensen A (2003) Scr Mater 48:119CrossRefGoogle Scholar
  18. 18.
    Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Mater Sci Eng A 527:2738CrossRefGoogle Scholar
  19. 19.
    Badiola JD, Mendia IA, Gutierrez I (2007) J Microscopy 338:373CrossRefGoogle Scholar
  20. 20.
    Wu BL, Wan G, Zhang YD, Du XH, Wagner F, Esling C (2010) Mater Sci Eng A 527:3365CrossRefGoogle Scholar
  21. 21.
    Kelly A, Groves GW, Kidd P (2000) Crystallography and crystal defects. Wiley, New YorkGoogle Scholar
  22. 22.
    Al-Samman T, Gottstein G (2008) Mater Sci Eng A 488:406CrossRefGoogle Scholar
  23. 23.
    Agnew SR, Horton JA, Yoo MH (2002) Met Trans A 33:851Google Scholar
  24. 24.
    Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K, Higashi K (2003) Acta Mater 51:2055CrossRefGoogle Scholar
  25. 25.
    Mathis K, Nyilas K, Axt A, Dragomir-Cernatescu I, Ungar T, Lukač P (2004) Acta Mater 52:2889CrossRefGoogle Scholar
  26. 26.
    Koike J, Ohyama R, Kobayashi T, Suzuki M, Maruyama K (2003) Mater Trans 44:445CrossRefGoogle Scholar
  27. 27.
    Sutton AP, Balluffi RW (1995) Interfaces in Crystalline Materials. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Physics of the ASCRPrague 8Czech Republic

Personalised recommendations