Journal of Materials Science

, Volume 47, Issue 7, pp 3265–3271 | Cite as

The role of low-angle grain boundaries in multi-temperature equal channel angular pressing of Mg–3Al–1Zn alloy



Equal channel angular pressing was used to process an AZ31B magnesium alloy (nominally Mg–3Al–1Zn in wt%) at temperatures decreasing from 200 to 150 °C. The resulting microstructure was characterized by electron backscattered diffraction to reveal the role of low-angle grain boundaries in grain refinement. It was found that low-angle grain boundaries with misorientation angles lower than 5° are surrounded by regions of increased strain gradients, which can stimulate the generation of non-basal slip dislocations during the equal channel angular pressing at temperatures of approximately 150 °C. The strain gradients in the vicinity of the grain boundaries with misorientation angles in the range of 5°–10° were less frequent or were completely absent for high-angle grain boundaries with misorientation angles higher than 10°. This article also discusses the importance of low-angle grain boundaries for the generation of non-basal 〈c+a〉 dislocations needed for successful equal channel angular pressing of AZ31B at temperature of 150 °C.



The authors acknowledge financial support from the Academy of Sciences of the Czech Republic (Grant KAN300100801).


  1. 1.
    Von Mises R (1928) Z Angew Math Mech 8:161CrossRefGoogle Scholar
  2. 2.
    Yoo MH (1981) Metall Mater Trans A 12:409CrossRefGoogle Scholar
  3. 3.
    Reed-Hill RE, Robertson WD (1957) Acta Metall 5:728CrossRefGoogle Scholar
  4. 4.
    Ando S, Nakanuta K, Takashima K, Tonda H (1992) J Jpn Ind Light metal 42:765CrossRefGoogle Scholar
  5. 5.
    Agnew SR, Duygulu O (2005) Int J Plasticity 21:61CrossRefGoogle Scholar
  6. 6.
    Hutchinson WB, Barnett MR (2010) Scr Mat 63:737CrossRefGoogle Scholar
  7. 7.
    Biswas S, Dhinwal SS, Suwas S (2010) Acta Mat 58:3247CrossRefGoogle Scholar
  8. 8.
    Ding SX, Chány CP, Kao PW (2009) Metall Mater Trans A 40:415CrossRefGoogle Scholar
  9. 9.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  10. 10.
    Cetlin RP, Aguilar MTP, Figueiredo RB, Langdon TG (2010) J Mater Sci 45:4561. doi: 10.1007/s10853-010-4384-9 CrossRefGoogle Scholar
  11. 11.
    Stoica GM, Fielden DE, McDaniels R, Liu Y, Huang B, Liaw PK, Xu C, Langdon TG (2005) Mater Sci Eng A 410–411:239Google Scholar
  12. 12.
    Ostapovets A, Šedá P, Jäger A, Lejček P (2011) Scr Mater 64:470CrossRefGoogle Scholar
  13. 13.
    Beausir B, Suwas S, Toth LS, Neale KW, Fundenberger JJ (2008) Acta Mater 56:200CrossRefGoogle Scholar
  14. 14.
    Brewer LN, Field DP, Merriman CC (2009) In: Kumar M, Adams BL, Field DP, Schwartz AJ (eds) Electron backscatter diffraction in materials science. Springer, New York, p 251CrossRefGoogle Scholar
  15. 15.
    Li H, Hsu E, Szpunar J, Utsunomiya H, Sakai T (2008) J Mater Sci 43:7148. doi: 10.1007/s10853-008-3021-3 CrossRefGoogle Scholar
  16. 16.
    Wright SL, Field DP, Dingley DJ (2000) In: Kumar M, Adams BL, Schwartz AJ (eds) Electron backscatter diffraction in materials science. Kluwer Academic/Plenum Publisher, New York, p 141Google Scholar
  17. 17.
    Kubin LP, Mortensen A (2003) Scr Mater 48:119CrossRefGoogle Scholar
  18. 18.
    Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Mater Sci Eng A 527:2738CrossRefGoogle Scholar
  19. 19.
    Badiola JD, Mendia IA, Gutierrez I (2007) J Microscopy 338:373CrossRefGoogle Scholar
  20. 20.
    Wu BL, Wan G, Zhang YD, Du XH, Wagner F, Esling C (2010) Mater Sci Eng A 527:3365CrossRefGoogle Scholar
  21. 21.
    Kelly A, Groves GW, Kidd P (2000) Crystallography and crystal defects. Wiley, New YorkGoogle Scholar
  22. 22.
    Al-Samman T, Gottstein G (2008) Mater Sci Eng A 488:406CrossRefGoogle Scholar
  23. 23.
    Agnew SR, Horton JA, Yoo MH (2002) Met Trans A 33:851Google Scholar
  24. 24.
    Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K, Higashi K (2003) Acta Mater 51:2055CrossRefGoogle Scholar
  25. 25.
    Mathis K, Nyilas K, Axt A, Dragomir-Cernatescu I, Ungar T, Lukač P (2004) Acta Mater 52:2889CrossRefGoogle Scholar
  26. 26.
    Koike J, Ohyama R, Kobayashi T, Suzuki M, Maruyama K (2003) Mater Trans 44:445CrossRefGoogle Scholar
  27. 27.
    Sutton AP, Balluffi RW (1995) Interfaces in Crystalline Materials. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Physics of the ASCRPrague 8Czech Republic

Personalised recommendations