Journal of Materials Science

, Volume 47, Issue 7, pp 3140–3149 | Cite as

A water-dispersible, carboxylate-rich carbonaceous solid: synthesis, heavy metal uptake and EPR study

  • A. Tselepidou
  • M. Drosos
  • P. Stathi
  • A. B. Bourlinos
  • R. Zboril
  • Y. Deligiannakis
Article

Abstract

Thermal oxidation of Na-cholate hydrate at 300 °C in air results in a carbonaceous solid (SC-30) nanomaterial bearing a steroid interior and a significant fraction of carboxylate sites. Electron Paramagnetic Resonance spectroscopy reveals that SC-30 bears a significant concentration of stable C-based radicals located at the interior of the steroid carbonaceous matrix. H-binding, determined by potentiometric acid–base titrations show that the SC-30 contains three types of H-binding sites. One type with pKa = 4.2 corresponds to surfacial metal-binding COOH groups. A second type of sites with pKa = 6.2 corresponds to COOH buried at the interior of the SC-30 carbon matrix, which are inactive in metal binding. A third type with pKa = 8.5—is also inactive in metal binding—originates from aggregated stacked-states like those observed for cholate in solution. The surfacial COO carboxylate groups, confer the solid hydrophilic character, therefore it can be easily dispersed in water at high concentrations providing clear aqueous colloids. pH-edge metal uptake experiments and Surface Complexation Modelling show that SC-30 is an efficient heavy metal adsorbent in aqueous solution for Pb2+ and Cu2+ ions at pH 5–8. A structural/functional model is discussed based on the heterogeneous character of the SC-30 material.

References

  1. 1.
    Levine DG, Schlosberg RH, Silbernagel BG (1982) Proc Natl Acad Sci USA 79:3365CrossRefGoogle Scholar
  2. 2.
    Linge HG (1989) Fuel 68:111CrossRefGoogle Scholar
  3. 3.
    Lafferty C, Hobday M (1990) Fuel 69:78CrossRefGoogle Scholar
  4. 4.
    Sugano M, Mashimo K, Wainai T (1999) Fuel 78:945CrossRefGoogle Scholar
  5. 5.
    Wu J, Xu Q, Bai T (2007) Appl Radiat Isot 65:901CrossRefGoogle Scholar
  6. 6.
    Pehlivan E, Arslan G (2007) Fuel Process Technol 88:99CrossRefGoogle Scholar
  7. 7.
    Sevilla M, Fuertes AB (2009) Carbon 47:2281CrossRefGoogle Scholar
  8. 8.
    Anderson R, Barron AR (2005) J Am Chem Soc 127:10458CrossRefGoogle Scholar
  9. 9.
    Demir-Cakan R, Baccile N, Antonietti M, Titirici M-M (2009) Chem Mater 21:484CrossRefGoogle Scholar
  10. 10.
    Giannakopoulos E, Drosos M, Deligiannakis Y Y (2009) J Colloid Interface Sci 336:59CrossRefGoogle Scholar
  11. 11.
    Bourlinos AB, Karakassides MA, Stathi P, Deligiannakis Y, Zboril R, Dallas P, Steriotis TA, Stubos AK, Trapalis C (2011) J Mater Sci 46:975. doi:10.1007/s10853-010-4854-0 CrossRefGoogle Scholar
  12. 12.
    Chang T (1984) Magn Reson Rev 9:65Google Scholar
  13. 13.
    Herbelin A, Westall J (1999) FITEQL: a computer program for determination of chemical equilibrium constant from experimental data, version 4.0; Report 99-01, Corvallis OR, Department of Chemistry, Oregon State UniversityGoogle Scholar
  14. 14.
    Stathi P, Litina K, Gournis D, Giannopoulos TS, Deligiannakis Y (2007) J Colloid Interface Sci 316:298CrossRefGoogle Scholar
  15. 15.
    Schwartz LM, Gelb RI, Laufer DA (1980) J Chem Eng Data 25:95CrossRefGoogle Scholar
  16. 16.
    Murata K, Ushijima H (1996) J Appl Phys 79:978CrossRefGoogle Scholar
  17. 17.
    Zhou J-H, Sui Z-J, Zhu J, Li P, Chen D, Dai Y-C, Yuan W-K (2007) Carbon 45:785CrossRefGoogle Scholar
  18. 18.
    Yao X, Pollack RM (1999) Can J Chem 77:634CrossRefGoogle Scholar
  19. 19.
    Tanaka T, Nakashima T, Lee S, Nagadome S, Sasaki Y, Ueno M, Sugihara G (1995) Colloid Polym Sci 273:392CrossRefGoogle Scholar
  20. 20.
    Abiman P, Crossley A, Wildgoose GG, Jones JH, Richard Compton G (2007) Langmuir 23:7847CrossRefGoogle Scholar
  21. 21.
    Baes CF, Mesmer RE (1986) The Hydrolysis of Cations. Kriegen, MalandarGoogle Scholar
  22. 22.
    Powell KJ, Brown PL, Byrne RH, Gajda T, Hefter G, Sjoberg S, Wanner H (2007) Pure Appl Chem 79:895CrossRefGoogle Scholar
  23. 23.
    Grigoropoulou G, Christoforidis KC, Louloudi M, Deligiannakis Y (2007) Langmuir 23:10407CrossRefGoogle Scholar
  24. 24.
    Bencini A, Gatteschi D (1979) J Magn Reson 34:653CrossRefGoogle Scholar
  25. 25.
    Peisach J, Blumberg WE (1974) Arch Biochem Biophys 165:691CrossRefGoogle Scholar
  26. 26.
    Lijewski S, Wencka M, Hoffmann SK, Kempinski M, Kempinski W, Sliwinska-Bartkowiak M (2008) Phys Rev B 77:014304CrossRefGoogle Scholar
  27. 27.
    Arčon D, Jagličič Z, Zorko A, Rode AV, Christy AG, Madsen NR, Gamaly EG, Luther-Davies B (2006) Phys Rev B 74:014438CrossRefGoogle Scholar
  28. 28.
    Garaj S, Thien-Nga L, Gaal R, Forro L, Takahashi K, Kokai F, Yudasaka M, Iijima S (2000) Phys Rev B 62:17115CrossRefGoogle Scholar
  29. 29.
    Deligiannakis Y (2007) Mol Phys 105:2095CrossRefGoogle Scholar
  30. 30.
    Louloudi M, Deligiannakis Y, Hadjiliadis N (1998) Inorg Chem 37:6847CrossRefGoogle Scholar
  31. 31.
    El-Shafey El, Cox M (2002) J Chem Technol Biotechnol 77:429CrossRefGoogle Scholar
  32. 32.
    Stathi P, Deligiannakis Y (2010) J Colloid Interf Sci 351:239CrossRefGoogle Scholar
  33. 33.
    Hollender D, Jakusch T, Buhsina S, Aboukais A, Aad EA, Kiss T (2001) J Inorg Biochem 85:245CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. Tselepidou
    • 1
  • M. Drosos
    • 1
  • P. Stathi
    • 1
  • A. B. Bourlinos
    • 2
  • R. Zboril
    • 3
  • Y. Deligiannakis
    • 1
  1. 1.Laboratory of Physical Chemistry, Department of Environmental and Natural Resources ManagementUniversity of IoanninaAgrinioGreece
  2. 2.Institute of Materials Science, NCSR “Demokritos”AthensGreece
  3. 3.Department of Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and MaterialsPalacky UniversityOlomoucCzech Republic

Personalised recommendations