Journal of Materials Science

, Volume 47, Issue 7, pp 3115–3124 | Cite as

Constitutive analysis of compressive deformation behavior of ELI-grade Ti–6Al–4V with different microstructures

  • Chan Hee Park
  • Young Il Son
  • Chong Soo Lee


In this study, a constitutive analysis of the flow responses of Ti–6Al–4V under various strain rates \( \dot{\varepsilon } \) was conducted by separately quantifying the hardening and softening effects of microstructure, interstitial solute and deformation heating on the total stress. For this purpose, a series of compression tests on an extra-low interstitial grade alloy with equiaxed, lamellar, or bimodal microstructures was performed at \( 10^{ - 3} \le \dot{\varepsilon } \le 10\;{\text{s}}^{ - 1} \) until the metal fractured, and the results were compared to those of the commercial grade alloy. The thermal stress σ* increased with an increasing interstitial solute concentration; the athermal stress increased in the order of equiaxed, lamellar, and bimodal microstructures. Load–unload–reload tests revealed that the flow softening at a relatively high \( \dot{\varepsilon } \) was likely caused by deformation heating rather than by microstructure change; thus flow softening was attributed to a decrease in σ*. Finally, a mechanical threshold stress model was extended to capture those observations; the modified model can provide a reasonable prediction of flow stress in Ti–6Al–4V with different microstructures and interstitial solute concentrations.


Mobile Dislocation Lamellar Microstructure Flow Softening Ultimate Compressive Strength Equiaxed Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lee DB, Kim MJ, Chen L, Bak SH, Yaskiv O, Pohrelyuk I, Fedirko V (2011) Met Mater Int 17:471CrossRefGoogle Scholar
  2. 2.
    Choi BJ, Kim YJ (2010) Kor J Met Mater 48:780Google Scholar
  3. 3.
    Park CH, Ko YG, Park JW, Lee CS (2008) Mater Sci Eng A 496:150CrossRefGoogle Scholar
  4. 4.
    Welsch G, Bunk W (1982) Metall Trans 13A:889Google Scholar
  5. 5.
    Gysler A, Lutjering G (1982) Metall Mater 13A:1435CrossRefGoogle Scholar
  6. 6.
    Kim TH, Lee JH, Hong SI (2011) Kor J Met Mater 49:121Google Scholar
  7. 7.
    Park SB, Park CK, Hwang JT, Cho WI, Jang H (2011) Met Mater Int 17:729CrossRefGoogle Scholar
  8. 8.
    Nemat-Nasser S, Guo WG, Nesterenko VF, Indrakanti SS, Gu YB (2001) Mech Mater 33:425CrossRefGoogle Scholar
  9. 9.
    Wagoner Johnson AJ, Bull CW, Kumar KS, Briant CL (2003) Metall Mater Trans 34A:295CrossRefGoogle Scholar
  10. 10.
    Khan AS, Kazmi R, Farrokh B, Zupan M (2007) Int J Plasticity 23:1105CrossRefGoogle Scholar
  11. 11.
    Venkatesh BD, Chen DL, Bhole SD (2009) Mater Sci Eng A 506:117CrossRefGoogle Scholar
  12. 12.
    Saitova LR, Höppel HW, Göken M, Semenova IP, Valiev RZ (2009) Int J Fatigue 31:322CrossRefGoogle Scholar
  13. 13.
    Conrad H, Done RM, De Meester B (1973) In: Jaffee RL, Burte HM (eds) Titanium science and technology. Plenum Press, New YorkGoogle Scholar
  14. 14.
    Doner M, Conrad H (1973) Metall Trans 4A:2809CrossRefGoogle Scholar
  15. 15.
    De Meester B, Döner M, Conrad H (1975) Metall Trans 6A:65Google Scholar
  16. 16.
    Kocks UF, Argon AS, Ashby MF (1975) Prog Mater Sci 19:110CrossRefGoogle Scholar
  17. 17.
    Mecking H, Kocks UF (1981) Acta Metall 29:1865CrossRefGoogle Scholar
  18. 18.
    Follansbee PS, Kocks UF (1988) Acta Metall 36:81CrossRefGoogle Scholar
  19. 19.
    Lee DG, Lee S, Lee CS, Hur S (2003) Metall Mater Trans 34A:2541CrossRefGoogle Scholar
  20. 20.
    Follansbee PS, Gray GT III (1989) Metall Trans 20A:863Google Scholar
  21. 21.
    Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, LondonGoogle Scholar
  22. 22.
    Picu RC, Majorell A (2002) Mater Sci Eng A326:306Google Scholar
  23. 23.
    Park CH, Hong SG, Lee CS (2011) Mater Sci Eng A528:1154Google Scholar
  24. 24.
    Kohn DH, Ducheyne P (1991) J Mater Sci 26:328. doi: 10.1007/BF00576523 CrossRefGoogle Scholar
  25. 25.
    Johnson GR, Cook WH (1983) In: Proceedings of the seventh international symposium on ballistics, HagueGoogle Scholar
  26. 26.
    Lee WS, Lin CF (1998) Mater Sci Eng A241:48Google Scholar
  27. 27.
    Seo S, Min O, Yang H (2005) Int J Impact Eng 31:735CrossRefGoogle Scholar
  28. 28.
    Zerilli FJ, Armstrong RW (1987) J Appl Phys 61:1816CrossRefGoogle Scholar
  29. 29.
    Macdougall DAS, Harding J (1999) J Mech Phys Solids 47:1157CrossRefGoogle Scholar
  30. 30.
    Xue Q, Meyers MA, Nesterenko VF (2002) Acta Mater 50:575CrossRefGoogle Scholar
  31. 31.
    Nemat-Nasser S, Li Y (1998) Acta Mater 46:565CrossRefGoogle Scholar
  32. 32.
    Nemat-Nasser S, Isaacs JB (1997) Acta Mater 45:907CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Advanced Materials Research & Implementation CenterKorea Institute of Materials ScienceChangwonRepublic of Korea
  2. 2.The 1st R&D Institute-6, Agency for Defense DevelopmentTaejonRepublic of Korea
  3. 3.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations