Journal of Materials Science

, Volume 47, Issue 10, pp 4211–4235 | Cite as

A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics

  • Daithí de Faoite
  • David J. Browne
  • Franklin R. Chang-Díaz
  • Kenneth T. Stanton


The current review uses the material requirements of a new space propulsion device, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) as a basis for presenting the temperature-dependent properties of a range of dielectric ceramics, but data presented could be used in the engineering design of any ceramic component with complementary material requirements. A material is required for the gas containment tube (GCT) of VASIMR® to allow it to operate at higher power levels. The GCT’s operating conditions place severe constraints on the choice of material. An electrically-insulating material is required with a high-thermal conductivity, low-dielectric loss factor, and high-thermal shock resistance. There is a lack of a representative set of temperature-dependent material property data for materials considered for this application and these are required for accurate thermo-structural modelling. This modelling would facilitate the selection of an optimum material for this component. The goal of this article is to determine the best material property data values for use in the materials selection and design of such components. A review of both experimentally and theoretically determined temperature-dependent and room temperature properties of several materials has been undertaken. Data extracted are presented by property. Properties reviewed are density, Young’s, bulk and shear moduli, Poisson’s ratio, tensile, flexural and compressive strength, thermal conductivity, specific heat capacity, thermal expansion coefficient, and the factors affecting maximum service temperature. Materials reviewed are alumina, aluminium nitride, beryllia, fused quartz, sialon, and silicon nitride.


Thermal Conductivity Thermal Expansion Coefficient Flexural Strength Silicon Nitride Thermal Shock Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the financial support of the FÁS Science Challenge Programme, Ireland.


  1. 1.
    Chang-Diaz FR (2000) Sci Am 283(5):90CrossRefGoogle Scholar
  2. 2.
    Squire JP, Chang-Diaz FR, Glover TW, Jacobson VT, McCaskill GE, Winter DS, Baity FW, Carter MD, Goulding RH (2006) Thin Solid Films 506:579CrossRefGoogle Scholar
  3. 3.
    Batishchev O, Molvig K, Chang-Diaz FR, Squire JP (2003) In: 30th EPS conference on controlled fusion and plasma physics, St. Petersburg, 7–11 July 2003Google Scholar
  4. 4.
    Stanton KT, Browne DJ, Mulcahy J (2006) In: High Power Electrical Propulsion Workshop, Ad Astra Rocket Company, LiberiaGoogle Scholar
  5. 5.
    Mulcahy JM, Browne DJ, Stanton KT, Chang-Diaz FR, Cassady L (2008) In: 5th European thermal-sciences conference, EindhovenGoogle Scholar
  6. 6.
    Mulcahy James M, Browne David J, Stanton Kenneth T, Chang Diaz Franklin R, Cassady Leonard D, Berisford Daniel F, Bengtson Roger D (2009) Int J Heat Mass Trans 52(9–10):2343CrossRefGoogle Scholar
  7. 7.
    Tanikawa T, Shinohara S (2006) Thin Solid Films 506:559CrossRefGoogle Scholar
  8. 8.
    Fu GS, Xu HJ, Wang SF, Yu W, Sun W, Han L (2006) Physica B 382(1–2):17CrossRefGoogle Scholar
  9. 9.
    Blackwell DD, Chen FF (1997) Plasma Sour Sci Technol 6(4):569CrossRefGoogle Scholar
  10. 10.
    Toki K, Shinohara S, Tanikawa T, Shamrai KP (2006) Thin Solid Films 506:597CrossRefGoogle Scholar
  11. 11.
    Chen H, Kallos E, Muggli P, Katsouleas TC, Gundersen MA (2009) Plasma Sci IEEE Trans 37(3):456CrossRefGoogle Scholar
  12. 12.
    Little CE (1990) In: IEE Colloquium on Gas discharges as coherent and incoherent light sources, LondonGoogle Scholar
  13. 13.
    Loveland DG, Orchard DA, Zerrouk AF, Webb CE (1991) Meas Sci Technol 2(11):1083CrossRefGoogle Scholar
  14. 14.
    Heemstra D, White K (2010) U.S.A. Patent No. 7759600Google Scholar
  15. 15.
    Huffman M, Sakthivel P, Zimmerman T, Noble T (2000) U.S.A. Patent No. 6082374Google Scholar
  16. 16.
    Weibull WA (1951) J Appl Mech Trans ASME 18(3):293Google Scholar
  17. 17.
    Munro RG (1997) J Am Ceram Soc 80(8):1919CrossRefGoogle Scholar
  18. 18.
    Borland W (1989) In: Electronic materials handbook: packaging, vol 1. ASM International, New YorkGoogle Scholar
  19. 19.
    Heikkinen JA, Orivuori S, Linden J, Saarelma S, Heikinheimo L (1999) IEEE Trans Dielect Electrical Insulation 6(2):169CrossRefGoogle Scholar
  20. 20.
    Howlader MMR, Kinoshita C, Shiiyama K, Kutsuwada M (2002) J Appl Phys 92(4):1995CrossRefGoogle Scholar
  21. 21.
    Goulding RH, Zinkle SJ, Rasmussen DA, Stoller RE (1996) J Appl Phys 79(6):2920CrossRefGoogle Scholar
  22. 22.
    Slack Glen A, Tanzilli RA, Pohl RO, Vandersande JW (1987) J Phys Chem Solids 48(7):641CrossRefGoogle Scholar
  23. 23.
    Okamoto M, Arakawa H, Oohashi M, Ogihara S (1989) J Ceram Soc Jpn 97(1132):1478CrossRefGoogle Scholar
  24. 24.
    Watari K, Nakano H, Urabe K, Ishizaki K, Cao SX, Mori K (2002) J Mater Res 17(11):2940CrossRefGoogle Scholar
  25. 25.
    Jackson TB, Virkar AV, More KL, Dinwiddie RB, Cutler RA (1997) J Am Ceram Soc 80(6):1421CrossRefGoogle Scholar
  26. 26.
    Kurokawa Y, Utsumi K, Takamizawa H, Kamata T, Noguchi S (1985) Compon Hybrid Manuf Technol IEEE Trans 8(2):247CrossRefGoogle Scholar
  27. 27.
    Kuramoto N, Taniguchi H, Aso I (1986) Compon Hybrid Manuf Technol IEEE Trans 9(4):386CrossRefGoogle Scholar
  28. 28.
    Miyashiro F, Iwase N, Tsuge A, Ueno F, Nakahashi M, Takahashi T (1990) Compon Hybrid Manuf Technol IEEE Trans 13(2):313CrossRefGoogle Scholar
  29. 29.
    Norton MG (1993) Microelectron Int 6(3):18CrossRefGoogle Scholar
  30. 30.
    Gosey MT, Lodge KJ, Logan EA (1991) GEC J Resh 8(3):137Google Scholar
  31. 31.
    Harris J (1998) JOM J Miner Metals Mater Soc 50(6):56CrossRefGoogle Scholar
  32. 32.
    Lodge KJ, Sparrow JA, Perry ED, Logan EA, Goosey MT, Pedder DJ, Montgomery C (1990) Compon Hybrid Manuf Technol IEEE Trans 13(4):633CrossRefGoogle Scholar
  33. 33.
    La Spina L, Iborra E, Schellevis H, Clement M, Olivares J, Nanver LK (2008) Solid-State Electron 52(9):1359CrossRefGoogle Scholar
  34. 34.
    Lin Z, Yoon RJ (2005) In: Proceedings of the international symposium on advanced packaging materials: processes, properties and interfaces, IrvineGoogle Scholar
  35. 35.
    Long G, Foster LM (1962) J Electrochem Soc 109(12):1176CrossRefGoogle Scholar
  36. 36.
    Rafaniello W (1992) In: Technical Report Contract Number DAAL03-88-C-001, U.S. Army Research Office, Ann ArborGoogle Scholar
  37. 37.
    Taylor KM, Lenie C (1960) J Electrochem Soc 107(4):308CrossRefGoogle Scholar
  38. 38.
    Kuramoto N, Taniguchi H, Numata Y, Aso I (1985) J Ceram Assoc 93(1081):517CrossRefGoogle Scholar
  39. 39.
    Ueno F, Horiguchi A, Kasori M, Shinozaki K, Tsuge A (1987) In: IUPAC-CHEMRAWN VI, advanced materials for innovations in energy, transportation and communications, Tokyo, 17–22 May 1987Google Scholar
  40. 40.
    Harris JH, Youngman RA, Teller RG (1990) J Mater Res 5(8):1763CrossRefGoogle Scholar
  41. 41.
    Buhr H, Muller G, Wiggers H, Aldinger F, Foley P, Roosen A (1991) J Am Ceram Soc 74(4):718CrossRefGoogle Scholar
  42. 42.
    Slack GA (1973) J Phys Chem Solids 34(2):321CrossRefGoogle Scholar
  43. 43.
    Slack GA, Schowalter LJ, Morelli D, Freitas JA (2002) J Cryst Growth 246(3-4):287CrossRefGoogle Scholar
  44. 44.
    Sakai H, Katsuda Y, Masuda M, Ihara C, Kameyama T (2008) J Ceram Soc Jpn 116(4):566CrossRefGoogle Scholar
  45. 45.
    Watari Koji (2001) J Ceram Soc Jpn 109(1265):S7CrossRefGoogle Scholar
  46. 46.
    Sachet JP, Laval JY, Lepoutre F, Boccara AC (1990) J Phys Colloq 51(C1):617CrossRefGoogle Scholar
  47. 47.
    Mitra S, Dutta G, Dutta I (1995) J Am Ceram Soc 78(9):2335CrossRefGoogle Scholar
  48. 48.
    Schultheiss T, Christina V, Cole M, Rathke J, Elliott T, Nguyen V, Phillips L, Preble J (1999) In: Proceedings of the 1999 particle accelerator conference, vol 2, New YorkGoogle Scholar
  49. 49.
    Hessinger PS, Styhr KH, Ryshkewitch E (1962) In: Technical report. National Beryllia Corp., HaskellGoogle Scholar
  50. 50.
    Snead LL, Zinkle SJ (2005) In: Space technology and applications international forum—STAIF 2005, vol 746, AlbuquerqueGoogle Scholar
  51. 51.
    Hamlyn-Harris C, Borthwick A, Fanthome J, Waldon C, Nightingale M, Richardson N (2009) Fus Eng Des 84(2–6):887CrossRefGoogle Scholar
  52. 52.
    Beaver WW, Theodore JG, Bielawski CA (1964) J Nucl Mater 14:326CrossRefGoogle Scholar
  53. 53.
    Clare TE (1964) J Nucl Mater 14:359CrossRefGoogle Scholar
  54. 54.
    Carniglia SC, Johnson RE, Hott AC, Bentle GG (1964) J Nucl Mater 14:378CrossRefGoogle Scholar
  55. 55.
    Bardsley J, Ridal A (1964) J Nucl Mater 14:368CrossRefGoogle Scholar
  56. 56.
    Veevers K, Whatham JF, Wright WJ (1964) J Nucl Mater 14:395CrossRefGoogle Scholar
  57. 57.
    Brown RJ, Bass NW (1964) J Nucl Mater 14:341CrossRefGoogle Scholar
  58. 58.
    Lillie J (May 19 1961) In: Technical Report UCRL-6457. Lawrence Radiation Laboratory, University of California, LivermoreGoogle Scholar
  59. 59.
    Fryxell RE, Chandler BA (1964) J Am Ceram Soc 47(6):283CrossRefGoogle Scholar
  60. 60.
    Heard HC, Cline CF (1980) J Mater Sci 15(8):1889. doi: 10.1007/BF00550614 CrossRefGoogle Scholar
  61. 61.
    Kelly JW (1963) J Nucl Mater 8(2):227CrossRefGoogle Scholar
  62. 62.
    Alexander CS, Chhabildas LC, Reinhart WD, Templeton DW (2008) Int J Impact Eng 35(12):1376CrossRefGoogle Scholar
  63. 63.
    Shikama T, Yasuda K, Yamamoto S, Kinoshita C, Zinkle SJ, Hodgson ER (1999) J Nucl Mater 271:560CrossRefGoogle Scholar
  64. 64.
    Gorshkov A, Orlinski D, Sannikov V, Vukolov K, Goncharov S, Sadovnikov Y, Kirillov A (1999) J Nucl Mater 273(3):271CrossRefGoogle Scholar
  65. 65.
    Oishi J, Kimura T (1969) Metrologia 5(2):50Google Scholar
  66. 66.
    Jack KH, Wilson WI (1972) Nat Phys Sci 238(80):28Google Scholar
  67. 67.
    Oyama Y, Kamigait O (1971) Jpn J Appl Phys 10(11):1637Google Scholar
  68. 68.
    Jack KH (1973) Trans J Br Ceram Soc 72(8):376Google Scholar
  69. 69.
    Oyama Y (1972) Jpn J Appl Phys 11(5):760Google Scholar
  70. 70.
    Jack KH (1976) J Mater Sci 11(6):1135. doi: 10.1007/BF02396649 CrossRefGoogle Scholar
  71. 71.
    Cao GZ, Metselaar R (1991) Chem Mater 3(2):242CrossRefGoogle Scholar
  72. 72.
    Jama SAB, Thompson DP, Jack KH (1975) Spec Ceram 6:299Google Scholar
  73. 73.
    Hampshire S, Park HK, Thompson DP, Jack KH (1978) Nature 274(5674):880CrossRefGoogle Scholar
  74. 74.
    Acikbas NC, Suvaci E, Mandal H (2006) J Am Ceram Soc 89(10):3255CrossRefGoogle Scholar
  75. 75.
    Ekström T, Falk LKL, Shen ZJ (1997) J Am Ceram Soc 80(2):301CrossRefGoogle Scholar
  76. 76.
    Soderlund E, Ekstrom T (1990) J Mater Sci 25(11):4815. doi: 10.1007/BF01129947 CrossRefGoogle Scholar
  77. 77.
    Ekström T (1989) Mater Sci Eng A 109:341 Google Scholar
  78. 78.
    Liu DM, Chen CJ, Lee RRR (1995) J Appl Phys 77(2):494CrossRefGoogle Scholar
  79. 79.
    Hampshire S, Pomeroy MJ (2008) Int J Appl Ceram Technol 5(2):155CrossRefGoogle Scholar
  80. 80.
    Çaliş N, Kuşhan ŞR, Kara F, Mandal H (2004) J Eur Ceram Soc 24(12):3387CrossRefGoogle Scholar
  81. 81.
    Carruthers WD, Becher PF, Ferber MK, Pollinger J (2002) In: Proceedings of ASME Turbo Expo, Amsterdam, 3–6 June 2002Google Scholar
  82. 82.
    Shen ZJ, Peng H, Pettersson P, Nygren M (2002) J Am Ceram Soc 85(11):2876CrossRefGoogle Scholar
  83. 83.
    Woodruff AK, Hellmann J (2006) In: Technical Report ARL-CR-573, June 2006, Army Research Laboratory, Aberdeen Proving GroundGoogle Scholar
  84. 84.
    Su XL, Wang PL, Chen WW, Zhu B, Cheng YB, Yan DS (2004) J Am Ceram Soc 87(4):730CrossRefGoogle Scholar
  85. 85.
    Zalite I, Zilinska N, Kladler G (2007) J Phys 93(1):012008Google Scholar
  86. 86.
    Jack KH (1986) In: Non-oxide technical and engineering ceramics, chapter sialons: a study in materials development. Elsevier Applied Science, LondonGoogle Scholar
  87. 87.
    Kirby KW, Jankiewicz A, Janney M, Walls C, Kupp D (2000) In: Proceedings of the 8th Department of defense electromagnetic windows symposium. U.S. Air Force Academy, Colorado SpringsGoogle Scholar
  88. 88.
    Hardie D, Jack KH (1957) Nature 180(4581):332CrossRefGoogle Scholar
  89. 89.
    Grün R (1979) Acta Crystallogr B 35:800CrossRefGoogle Scholar
  90. 90.
    Kuwabara Akihide, Matsunaga Katsuyuki, Tanaka Isao (2008) Phys Rev B 78(6):064104CrossRefGoogle Scholar
  91. 91.
    Watari K, Hirao K, Brito ME, Toriyama M, Ishizaki K (2005) Adv Technol Mater Mater Proc J 7(2):191Google Scholar
  92. 92.
    Suganuma K (1990) In: Joining of ceramics, chapter joining silicon nitride to metals and to itself. Chapman and Hall, LondonGoogle Scholar
  93. 93.
    Hayashi K, Tsujimoto S, Nishikawa T, Imamura Y (1986) Adv Technol Mater Mater Proc J 94(6):595CrossRefGoogle Scholar
  94. 94.
    Zhou You, Zhu Xinwen, Hirao Kiyoshi, Lences Zoltan (2008) Int J Appl Ceram Technol 5(2):119CrossRefGoogle Scholar
  95. 95.
    Lofaj Frantisek, Wiederhorn Sheldon N (2009) J Ceram Proc Res 10(3):269Google Scholar
  96. 96.
    Wiederhorn SM, Krause RF, Lofaj F, Taffner U (2005) In: Kim HD, Lin HT, Hoffmann MJ (eds) Advanced Si-based ceramics and composites, vol 287 of Key Engineering Materials. Trans Tech Publications Ltd, Stafa-ZurichGoogle Scholar
  97. 97.
    Ling G, Yang HT (2005) Mater Chem Phys 90(1):31CrossRefGoogle Scholar
  98. 98.
    Dodd SP, Saunders GA, Cankurtaran M, James B (2001) J Mater Sci 36(3):723. doi: 10.1023/A:1004897126648 CrossRefGoogle Scholar
  99. 99.
    Sosman RB (1927) In: The properties of silica. American Chemical Society Monograph Series (No. 37), Book Department, The Chemical Catalog Company, Inc., New YorkGoogle Scholar
  100. 100.
    Swab JJ, Wereszczak AA, Tice J, Caspe R, Kraft RH, Adams JW (2005) In: Technical report ARL-TR-3417. Army Research Laboratory. Army Research Laboratory, Aberdeen Proving GroundGoogle Scholar
  101. 101.
    Snead LL, Zinkle SJ, White DP (2005) J Nucl Mater 340(2–3):187CrossRefGoogle Scholar
  102. 102.
    Bruls RJ, Hintzen HT, de With G, Metselaar R (2001) J Eur Ceram Soc 21(3):263CrossRefGoogle Scholar
  103. 103.
    Kume S, Yasuoka Mi, Lee S-K, Kan A, Ogawa H, Watari K (2007) J Eur Ceram Soc 27(8–9):2967CrossRefGoogle Scholar
  104. 104.
    De With G, Hattu N (1983) J Mater Sci 18(2):503. doi: 10.1007/BF00560639 CrossRefGoogle Scholar
  105. 105.
    Toutanji HA, Friel D, El-Korchi T, Nathan KR, Wechsler G, Rafaniello W (1995) J Eur Ceram Soc 15(5):425CrossRefGoogle Scholar
  106. 106.
    Fukuhara M, Sanpei A, Shibuki K (1997) J Mater Sci 32(5):1207. doi: 10.1023/A:1018583918380 CrossRefGoogle Scholar
  107. 107.
    Daly BC, Antonelli GA, Maris HJ, Ford WK, Wong L, Andideh E (2002) Phys B 316:254CrossRefGoogle Scholar
  108. 108.
    Heidinger R (2003) In: Proceedings of the 22nd Symposium on fusion technology, vol 66–68. Fusion Engineering and Design, HelsinkiGoogle Scholar
  109. 109.
    Ye J, Kojima N, Furuya K, Munakata F, Okada A (2002) J Therm Anal Calorim 69(3):1031CrossRefGoogle Scholar
  110. 110.
    Watari K, Hirao K, Toriyama M, Ishizaki K (1999) J Am Ceram Soc 82(3):777CrossRefGoogle Scholar
  111. 111.
    Kumar A, Jayakumar T, Raj B, Ray KK (2003) Acta Mater 51(8):2417CrossRefGoogle Scholar
  112. 112.
    Sirdeshmukh DB, Subhadra KG (2005) J Mater Sci 40(7):1553. doi: 10.1007/s10853-005-0654-3 CrossRefGoogle Scholar
  113. 113.
    Dean EA, Lopez JA (1983) J Am Ceram Soc 66(5):366CrossRefGoogle Scholar
  114. 114.
    Phani KK, Niyogi SK (1987) J Mater Sci 22(1):257. doi: 10.1007/BF01160581 CrossRefGoogle Scholar
  115. 115.
    Lam DCC, Lange FF, Evans AG (1994) J Am Ceram Soc 77(8):2113CrossRefGoogle Scholar
  116. 116.
    Yoshimura HN, Molisani AL, Narita NE, Cesar PF, Goldenstein H (2007) Mater Res 10(2):127CrossRefGoogle Scholar
  117. 117.
    Hasselman DPH (1962) J Am Ceram Soc 45(9):452CrossRefGoogle Scholar
  118. 118.
    Knudsen FP (1959) J Am Ceram Soc 42(8):376CrossRefGoogle Scholar
  119. 119.
    Morrell R (1985) Handbook of properties of technical & engineering ceramics: part 1: an introduction for the engineer and designer. Her Majesty’s Stationary Office, LondonGoogle Scholar
  120. 120.
    Timoshenko SP, Goodier JN (1970) In: Engineering socities monographs, 3rd edn. McGraw-Hill, SingaporeGoogle Scholar
  121. 121.
    Wright AF (1997) J Appl Phys 82(6):2833CrossRefGoogle Scholar
  122. 122.
    Nye JF (1957) In: Physical properties of crystals: their representation by tensors and matrices. Clarendon Press, OxfordGoogle Scholar
  123. 123.
    Alers GA, Neighbours JR (1957) J Appl Phys 28(12):1514CrossRefGoogle Scholar
  124. 124.
    Voigt W (1928) Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). B. G. Teubner, LeipzigGoogle Scholar
  125. 125.
    Reuss A (1929) Z Angew Math Mech 9(1):49CrossRefGoogle Scholar
  126. 126.
    Hill R (1952) Proc Phys Soc Sect A 65(5):349CrossRefGoogle Scholar
  127. 127.
    Chung DH, Buessem WR (1967) J Appl Phys 38(6):2535CrossRefGoogle Scholar
  128. 128.
    Wachtman JB, Tefft WE, Lam DG, Apstein CS (1961) Phys Rev 122(6):1754CrossRefGoogle Scholar
  129. 129.
    Munro RG (2004) J Res Nat Inst Stand Technol 109(5):497Google Scholar
  130. 130.
    Anderson OL (1966) Phys Rev 144(2):553CrossRefGoogle Scholar
  131. 131.
    Wachtman JB, Lam DG (1959) J Am Ceram Soc 42(5):254CrossRefGoogle Scholar
  132. 132.
    Fukuhara M, Yamauchi I (1993) J Mater Sci 28(17):4681. doi: 10.1007/BF00414258 CrossRefGoogle Scholar
  133. 133.
    Wolfenden A (1997) J Mater Sci 32(9):2275. doi: 10.1023/A:1018524200517 CrossRefGoogle Scholar
  134. 134.
    Sánchez-González E, Miranda P, Meléndez-Martínez JJ, Guiberteau F, Pajares A (2007) J Eur Ceram Soc 27(11):3345CrossRefGoogle Scholar
  135. 135.
    Staehler JM, Predebon WW, Pletka BJ, Subhash G (2000) Mater Sci Eng A 291(1–2):37Google Scholar
  136. 136.
    Unni CK, Gordon DE (1995) J Mater Sci 30(5):1173. doi: 10.1007/BF00356116 CrossRefGoogle Scholar
  137. 137.
    McSkimin HJ (1953) J Appl Phys 24(8):988CrossRefGoogle Scholar
  138. 138.
    McSkimin HJ (1959) J Acoust Soc Am 31(3):287CrossRefGoogle Scholar
  139. 139.
    Fukuhara M, Sampei A (1999) J Mater Sci Lett 18(10):751CrossRefGoogle Scholar
  140. 140.
    Carnevale EH, Larson GS, Lynnworth LC (1964) J Acoust Soc Am 36(9):1678CrossRefGoogle Scholar
  141. 141.
    Wereszczak AA, Ferber MK, Jenkins MG, Lin CKJ, Breder K, Kirkland TP (1996) In: Technical Report ORNL/TM-12943, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  142. 142.
    Xia Q, Xia H, Ruoff AL (1993) J Appl Phys 73(12):8198CrossRefGoogle Scholar
  143. 143.
    Ueno M, Onodera A, Shimomura O, Takemura K (1992) Phys Rev B 45(17):10123CrossRefGoogle Scholar
  144. 144.
    Peng Feng, Chen Dong, Fu Hongzhi, Cheng Xinlu (2008) Phys B 403(23–24):4259CrossRefGoogle Scholar
  145. 145.
    Hazen RM, Finger LW (1986) J Appl Phys 59(11):3728CrossRefGoogle Scholar
  146. 146.
    Cline CF, Stephens DR (1965) J Appl Phys 36(9):2869CrossRefGoogle Scholar
  147. 147.
    Spinner S, Tefft WE (1961) In: Proceedings ASTM, Kansas CityGoogle Scholar
  148. 148.
    Kipp ME, Grady DE (1994) J Phys IV 4(C8):249CrossRefGoogle Scholar
  149. 149.
    Cline CF, Dunegan HL, Henderson GW (1967) J Appl Phys 38(4):1944CrossRefGoogle Scholar
  150. 150.
    Rice RW (1997) J Mater Sci 32(12):3071. doi: 10.1023/A:1018630113180 CrossRefGoogle Scholar
  151. 151.
    Koike J, Tashima S, Wakiya S, Maruyama K, Oikawa H (1996) Mater Sci Eng 220(1–2):26Google Scholar
  152. 152.
    Raiser GF, Wise JL, Clifton RJ, Grady DE, Cox DE (1994) J Appl Phys 75(8):3862CrossRefGoogle Scholar
  153. 153.
    Mizuta H, Oda K, Shibasaki Y, Maeda M, Machida M, Ohshima K (1992) J Am Ceram Soc 75(2):469CrossRefGoogle Scholar
  154. 154.
    Boch P, Glandus JC, Jarrige J, Lecompte JP, Mexmain J (1982) Ceram Int 8(1):34CrossRefGoogle Scholar
  155. 155.
    Glandus JC, Besson JL, Boch P (1981) Sci Ceram 11:419Google Scholar
  156. 156.
    Terao R, Tatami J, Meguro T, Komeya K (2002) J Eur Ceram Soc 22(7):1051CrossRefGoogle Scholar
  157. 157.
    Bentle GG, Kniefel RM (1965) J Am Ceram Soc 48(11):570CrossRefGoogle Scholar
  158. 158.
    Jones MI, Hyuga H, Hirao K, Yamauchi Y (2004) J Am Ceram Soc 87(4):714CrossRefGoogle Scholar
  159. 159.
    Chen IW, Rosenflanz A (1997) Nature 389(6652):701CrossRefGoogle Scholar
  160. 160.
    Kim J, Rosenflanz A, Chen IW (2000) J Am Ceram Soc 83(7):1819CrossRefGoogle Scholar
  161. 161.
    Hazelton C, Rice J, Snead LL, Zinkle SJ (1998) J Nucl Mater 253(1–3):190CrossRefGoogle Scholar
  162. 162.
    Hatanaka K, Shiota H, Ando T (1991) JSME (Jpn Soc Mech Eng) Int J Ser Solid Mech Mater 34(3):351Google Scholar
  163. 163.
    Tennery VJ, Breder K, Ferber MK, Jenkins MG (2000) J Am Ceram Soc 83(5):1177CrossRefGoogle Scholar
  164. 164.
    McLean AF, Hartsock DL (1989) In: Wachtman JB (eds) Structural ceramics: treatise on materials science and technology, vol 29. Academic Press, New YorkGoogle Scholar
  165. 165.
    Robards CF, Gangler JJ (March 2nd 1951) In: Technical Report NACA Research Memorandum E50G21, Lewis Flight Propulsion Laboratory, ClevelandGoogle Scholar
  166. 166.
    Tennery VJ, Breder K, Ferber MK, Jenkins MG (2000) J Am Ceram Soc 83(5):1186CrossRefGoogle Scholar
  167. 167.
    Subhash G, Ravichandran G (1998) J Mater Sci 33(7):1933. doi: 10.1023/A:1004325926287 CrossRefGoogle Scholar
  168. 168.
    Kelley KK (1960) In: Technical report, United States Department of the Interior, Bureau of Mines, WashingtonGoogle Scholar
  169. 169.
    Sergeev OA, Shashkov AG, Umanskii AS (1982) J Eng Phys Thermophys 43:1375Google Scholar
  170. 170.
    White GK, Minges ML (1997) Int J Thermophys 18(5):1269CrossRefGoogle Scholar
  171. 171.
    Sedmidubský D, Leitner J (2006) J Cryst Growth 286(1):66CrossRefGoogle Scholar
  172. 172.
    Kelley KK (1939) J Am Chem Soc 61(5):1217CrossRefGoogle Scholar
  173. 173.
    Victor AC, Douglas TB (1963) J Res Nat Bur Stand A 67(4):325Google Scholar
  174. 174.
    Inaba H (1999) J Phase Equilib 20(3):187CrossRefGoogle Scholar
  175. 175.
    Swindeman RW (1964) J Nucl Mater 14:404CrossRefGoogle Scholar
  176. 176.
    Berman R (1976) Thermal conduction in solids. Clarendon Press, OxfordGoogle Scholar
  177. 177.
    Bruls RJ, Hintzen HT, Metselaar R (2005) J Eur Ceram Soc 25(6):767CrossRefGoogle Scholar
  178. 178.
    Hirao K, Watari K, Brito ME, Toriyama M, Kanzaki S (1996) J Am Ceram Soc 79(9):2485CrossRefGoogle Scholar
  179. 179.
    Drabble JR, Goldsmid HJ (1961) In: Thermal conduction in semiconductors. International Series of Monographs on Semiconductors, vol 4. Pergamon Press, OxfordGoogle Scholar
  180. 180.
    Abraitis RJ, Dargis AK, Rusyatskas AA, Sakalauskas EJ (1999) Refract Ind Ceram 40(7-8):351CrossRefGoogle Scholar
  181. 181.
    Kingery WD, Francl J, Coble RL, Vasilos T (1954) J Am Ceram Soc 37(2):107CrossRefGoogle Scholar
  182. 182.
    AlShaikhiand A, Srivastava GP (2008) J Appl Phys 103(8):083554CrossRefGoogle Scholar
  183. 183.
    Geith A, Kulig M, Hofmann T, Russel C (1993) J Mater Sci 28(4):865. doi: 10.1007/BF00400866 CrossRefGoogle Scholar
  184. 184.
    AlShaikhi A, Srivastava GP (2007) J Phys 92(1):012084Google Scholar
  185. 185.
    Harris JH, Enck RC, Youngman RA (1993) Phys Rev B 47(9):5428CrossRefGoogle Scholar
  186. 186.
    Sugawara A (1969) Physica 41(3):515CrossRefGoogle Scholar
  187. 187.
    Haggerty JS, Lightfoot A (1995) Ceram Eng Sci Proc 16(4):475CrossRefGoogle Scholar
  188. 188.
    Watari K, Li BC, Pottier L, Fournier D, Toriyama M (2000) In: Murata, Shinozaki K, Kimura T (eds) Electroceramics in Japan III, vol 181-1 of Key Engineering Materials, p 239. Trans Tech Publications Ltd, ZurichGoogle Scholar
  189. 189.
    Morelli DT, Heremans JP (2002) Appl Phys Lett 81(27):5126CrossRefGoogle Scholar
  190. 190.
    Hirosaki N, Ogata S, Kocer C, Kitagawa H, Nakamura Y (2002) Phys Rev B 65(13):134110CrossRefGoogle Scholar
  191. 191.
    Akimune Y, Munakata F, Matsuo K, Hirosaki N, Okamoto Y, Misono K (1999) J Ceram Soc Jpn 107(4):339CrossRefGoogle Scholar
  192. 192.
    Watari K, Seki Y, Ishizaki K (1989) J Ceram Soc Jpn 97(1):56CrossRefGoogle Scholar
  193. 193.
    Negita K (1985) J Mater Sci Lett 4(6):755CrossRefGoogle Scholar
  194. 194.
    Hirosaki N, Okamoto Y, Ando M, Munakata F, Akimune Y (1996) J Ceram Soc Jpn 104(1):49CrossRefGoogle Scholar
  195. 195.
    Watari K, Brito ME, Toriyama M, Ishizaki K, Cao S, Mori K (1999) J Mater Sci Lett 18(11):865CrossRefGoogle Scholar
  196. 196.
    Li B, Pottier L, Roger JP, Fournier D, Watari K, Hirao K (1999) J Eur Ceram Soc 19(8):1631CrossRefGoogle Scholar
  197. 197.
    Watari K, Hirao K, Brito ME, Toriyama M, Kanzaki S (1999) J Mater Res 14(4):1538CrossRefGoogle Scholar
  198. 198.
    Hirosaki N, Okamoto Y, Ando M, Munakata F, Akimune Y (1996) J Am Ceram Soc 79(11):2878CrossRefGoogle Scholar
  199. 199.
    Okamoto Y, Hirosaki N, Ando M, Munakata F, Akimune Y (1997) J Ceram Soc Jpn 105(7):631CrossRefGoogle Scholar
  200. 200.
    Furuya K, Munakata F, Matsuo K, Akimune Y, Ye J, Okada A (2002) J Therm Anal Calorim 69(3):873CrossRefGoogle Scholar
  201. 201.
    Zhu X, Zhou Y, Hirao K, Lences Z (2006) J Am Ceram Soc 89(11):3331CrossRefGoogle Scholar
  202. 202.
    Okamoto Y, Hirosaki N, Ando M, Munakata F, Akimune Y (1998) J Mater Res 13(12):3473CrossRefGoogle Scholar
  203. 203.
    Hirosaki N, Ando M, Okamoto Y, Munakata F, Akimune Y, Hirao K, Watari K, Brito ME, Toriyama M, Kanzaki S (1996) J Ceram Soc Jpn 104(12):1171CrossRefGoogle Scholar
  204. 204.
    Akimune Y, Munakata F, Matsuo K, Okamoto Y, Hirosaki N, Satoh C (1999) J Ceram Soc Jpn 107(12):1180CrossRefGoogle Scholar
  205. 205.
    Hirosaki N, Okamoto Y, Munakata F, Akimune Y (1999) J Eur Ceram Soc 19(12):2183CrossRefGoogle Scholar
  206. 206.
    Lee SK, Moretti JD, Readey MJ, Lawn BR (2002) J Am Ceram Soc 85(1):279CrossRefGoogle Scholar
  207. 207.
    Hayashi H, Hirao K, Yamauchi Y, Kanzaki S (March 24 2003) In: Annual meeting of the ceramic society of Japan, TokyoGoogle Scholar
  208. 208.
    Abdulagatov IM, Emirov SN, Tsomaeva TA, Gairbekov KA, Askerov SY, Magomedova NA (2000) J Phys Chem Solids 61(5):779CrossRefGoogle Scholar
  209. 209.
    Han I-S, Seo D-W, Kim S-Y, Hong K-S, Guahk KH, Lee KS (2008) J Eur Ceram Soc 28(5):1057CrossRefGoogle Scholar
  210. 210.
    Slack Glen A, Bartram SF (1975) J Appl Phys 46(1):89CrossRefGoogle Scholar
  211. 211.
    Iwanaga H, Kunishige A, Takeuchi S (2000) J Mater Sci 35(10):2451. doi: 10.1023/A:1004709500331 CrossRefGoogle Scholar
  212. 212.
    Walker DG, Mayer RM, Hickman BS (1964) J Nucl Mater 14:147CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Daithí de Faoite
    • 1
  • David J. Browne
    • 1
  • Franklin R. Chang-Díaz
    • 2
  • Kenneth T. Stanton
    • 1
  1. 1.School of Mechanical and Materials EngineeringUniversity College DublinBelfield, Dublin 4Ireland
  2. 2.Ad Astra Rocket CompanyHoustonUSA

Personalised recommendations