Advertisement

Journal of Materials Science

, Volume 47, Issue 6, pp 2966–2974 | Cite as

Mechanical and microstructural analysis of 2205 duplex stainless steel under hot working condition

  • A. Momeni
  • K. DehghaniEmail author
  • X. X. Zhang
Article

Abstract

Hot deformation characteristics of 2205 duplex stainless steel were analyzed by performing hot compression tests at a temperature range of 950–1200 °C and a strain rate of 0.001–1 s−1. Flow stress was modeled by the constitutive equation of hyperbolic sine function. The constants of n, A, α, and the apparent activation energy were determined at different strains. They were then fitted by polynomial equations. Using the hyperbolic sine function and the relations derived between constants and strain flow curves were successfully modeled. Microstructural evolutions were characterized using optical microscopy and electron back scattered diffraction techniques. The results showed that dynamic recovery in ferrite is accelerated at higher temperatures followed by transformation to continuous dynamic recrystallization. Dynamic recrystallization in austenite was postponed by the accommodation of strain in ferrite and very few internal boundaries in austenite. At high strain rates, dynamic recovery in ferrite and dynamic recrystallization in austenite are very slow. Consequently, the total recrystallized fraction decreases. At low temperatures this situation may cause flow instabilities. At low strain rates, softening processes dominate in austenite and ferrite whereas at intermediate strain rates, the formation of substructures is observed in both phases.

Keywords

Ferrite Austenite High Strain Rate Flow Curve Stack Fault Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gurrappa I, Krishna Reddy CV (2007) J Mater Proc Tech 182:195CrossRefGoogle Scholar
  2. 2.
    Itman Filho A, Rollo JMDA, Silva RV, Martinez G (2005) Mater Lett 59:1192CrossRefGoogle Scholar
  3. 3.
    Keshmiri H, Momeni A, Dehghani K, Ebrahimi GR, Heidari G (2009) J Mater Sci Technol 25:597Google Scholar
  4. 4.
    Fang YL, Liu ZY, Song HM, Jiang LZ (2009) Mater Sci Eng A 526:128CrossRefGoogle Scholar
  5. 5.
    Duprez L, De Cooman BC, Akdut N (2002) Met Mater Trans 33A:1931CrossRefGoogle Scholar
  6. 6.
    Mao P, Yang K, Su G (2003) J Mater Sci Technol 19:379Google Scholar
  7. 7.
    McQueen HJ, Ryan ND, Evangelista E, Xia X (1993) In: Proceedings 34th mechanical working and steel processing, 1993, Iron and Steel Inst. AIME, Warrendale: 101.Google Scholar
  8. 8.
    Dehghan-Manshadi A, Barnett MR, Hodgson PD (2007) Mater Sci Technol 23:1478CrossRefGoogle Scholar
  9. 9.
    Evangelista E, Mengucci P, Bowles J, McQueen HJ (1993) High Temp Mat Proc 12:57CrossRefGoogle Scholar
  10. 10.
    Momeni A, Dehghani K, Keshmiri HH, Ebrahimi GR (2010) Mater Sci Eng A527:1605Google Scholar
  11. 11.
    Momeni A, Dehghani K, Ebrahimi GR, Keshmiri H (2010) Met Mater Trans 41A:2898CrossRefGoogle Scholar
  12. 12.
    Mandal S, Bhaduri AK, Subramania Sarma V (2011) Met Mater Trans 42A:1062CrossRefGoogle Scholar
  13. 13.
    Momeni A, Dehghani K (2010) Mater Sci Eng A 527:5467CrossRefGoogle Scholar
  14. 14.
    Balancin O, Hoffmann WAM, Jonas JJ (2000) Metal Mater Trans 31A:1353CrossRefGoogle Scholar
  15. 15.
    Farnoush H, Momeni A, Dehghani K, Aghazadeh Mohandesi J, Keshmiri H (2010) Mater Des 31:220CrossRefGoogle Scholar
  16. 16.
    Maki T, Furuhara T, Tsuzaki K (2001) ISIJ Int 41:571CrossRefGoogle Scholar
  17. 17.
    Cizek P, Wynne BP, Rainforth WM (2006) J Phys 26:331Google Scholar
  18. 18.
    Solomon HD, Devine Jr TM (1982) In: Lula RA (ed) Duplex stainless steels ASM, Metals ParkGoogle Scholar
  19. 19.
    Nilsson JO (1992) Mater Sci Technol 8:685Google Scholar
  20. 20.
    Johansson J, Oden M (2000) Metall Mater Trans 31A:1557CrossRefGoogle Scholar
  21. 21.
    Estrin Y, Mecking H (1984) Acta Metall 32:57CrossRefGoogle Scholar
  22. 22.
    Momeni A, Dehghani K (2010) Met Mater Int 16:843CrossRefGoogle Scholar
  23. 23.
    Momeni A, Dehghani K (2011) Mater Sci Eng A528:1448Google Scholar
  24. 24.
    Sellars CM, Mc G, Tegart WJ (1972) Int Metall Rev 17:1Google Scholar
  25. 25.
    Mirzadeh H, Najafizadeh A (2010) Mater Sci Eng A527:1160Google Scholar
  26. 26.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Pergamon, NetherlandGoogle Scholar
  27. 27.
    Evangelista E, McQueen HJ, Niewczas M, Cabibbo M (2004) Can Metall Quart 43:339Google Scholar
  28. 28.
    He CS, Zhang YD, Wang YN, Zhao X, Zuo L, Esling C (2003) Scripta Mater 48:737CrossRefGoogle Scholar
  29. 29.
    Wang G, Wu SD, Zuo L, Esling C, Wang ZG, Li GY (2003) Mater Sci Eng A346:83CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Gey N, He C, Zhao X, Zuo L, Esling C (2004) Acta Mater 52:3467CrossRefGoogle Scholar
  31. 31.
    Dehghan Manshadi A, Hodgson PD (2008) J Mater Sci 43:6272. doi: 10.1007/s10853-008-2907-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mining and MetallurgyAmirKabir University of TechnologyTehranIran
  2. 2.Key Laboratory for Anisotropy and Texture of Materials (MOE)Northeastern UniversityShenyangChina
  3. 3.LEM3 UMR CNRS 7239, UDL–UPVMMetzFrance

Personalised recommendations