Journal of Materials Science

, Volume 47, Issue 6, pp 2943–2950 | Cite as

Controlling the morphology of silica–carbonate biomorphs using proteins involved in biomineralization

  • N. Sánchez-Puig
  • E. Guerra-Flores
  • F. López-Sánchez
  • P. A. Juárez-Espinoza
  • R. Ruiz-Arellano
  • R. González-Muñoz
  • R. Arreguín-Espinosa
  • A. Moreno


Silica–carbonate biomorphs are inorganic self-organized structures that mimic the morphology of living organisms. In this study, we present the effect that proteins involved in the in vivo biomineralization of silica and calcium carbonate have on the formation of silica–carbonate biomorphs. We tested four different sources of protein: (1) struthiocalcin-1, (2) the catalytic domain of silicatein-α of Tethya aurantia, (3) a protein extract obtained from the spicules of a vitreous sponge (Protosuberitis sp.), and (4) a protein extract obtained from the spines of the sea urchin Echinometra lucunter. In addition to the well-established role that pH plays in biomorph formation, all the proteins tested controlled the morphology of these aggregates. Biomorphs obtained in the presence of the catalytic domain of silicatein-α were similar in shape to those observed in the control though considerably smaller in size. Struthiocalcin-1 affected the availability of carbonate ions and completely inhibited the formation of biomorphs resulting only in worm-like aggregates. Finally, novel biomorphs with shapes such as twisting rods, sunflowers, and mitotic cells were obtained in the presence of protein extracts from the marine sponge spicules and sea urchin spines.


Sponge Marine Sponge Sponge Spicule Sodium Metasilicate Barium Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A.M. acknowledges the financial support from CONACYT project No. 82888 and partial financial support by DGAPA-UNAM Project No. IN201811 N.S-P acknowledges the financial support from UNAM-DGAPA project PAPIIT IN204010-3.


  1. 1.
    Garcia-Ruiz JM (1985) J Cryst Growth 73:251CrossRefGoogle Scholar
  2. 2.
    Garcia-Ruiz JM (1994) Origins Life Evol B 24:451CrossRefGoogle Scholar
  3. 3.
    Garcia-Ruiz JM, Amorós JL (1982) J Cryst Growth 55:379CrossRefGoogle Scholar
  4. 4.
    Bittarello E, Massaro FR, Aquilano D (2010) J Cryst Growth 312:402CrossRefGoogle Scholar
  5. 5.
    Garcia-Ruiz JM, Melero-Garcia E, Hyde ST (2009) Science 323:362CrossRefGoogle Scholar
  6. 6.
    Marin-Garcia L, Frontana-Uribe BA, Reyes-Grajeda JP, Stojanoff V, Serrano-Posada HJ, Moreno A (2008) Cryst Growth Des 8:1340CrossRefGoogle Scholar
  7. 7.
    Reyes-Grajeda JP, Marin-Garcia L, Stojanoff V, Moreno A (2007) Acta Crystallogr, Sect F: Struct Biol Cryst Commun 63:987CrossRefGoogle Scholar
  8. 8.
    Reyes-Grajeda JP, Moreno A, Romero A (2004) J Biol Chem 279:40876CrossRefGoogle Scholar
  9. 9.
    Beniash E, Addadi L, Weiner S (1999) J Struct Biol 125:50CrossRefGoogle Scholar
  10. 10.
    Livingston BT, Killian CE, Wilt F, Cameron A, Landrum MJ, Ermolaeva O, Sapojnikov V, Maglott DR, Buchanan AM, Ettensohn CA (2006) Dev Biol 300:335CrossRefGoogle Scholar
  11. 11.
    Mann K, Poustka AJ, Mann M (2008) Proteome Sci 6:33CrossRefGoogle Scholar
  12. 12.
    Mann K, Poustka AJ, Mann M (2008) Proteome Sci 6:22CrossRefGoogle Scholar
  13. 13.
    Mann S (2001) Biomineralization: principles and concepts in bioinorganic material chemistry. Oxford University Press, OxfordGoogle Scholar
  14. 14.
    Weaver JC, Morse DE (2003) Microsc Res Tech 62:356CrossRefGoogle Scholar
  15. 15.
    Shimizu K, Cha J, Stucky GD, Morse DE (1998) Proc Natl Acad Sci USA 95:6234CrossRefGoogle Scholar
  16. 16.
    Schroder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Muller IM, Muller WE (2006) J Biol Chem 281:12001CrossRefGoogle Scholar
  17. 17.
    Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1999) Angew Chem Int Edit 38:780Google Scholar
  18. 18.
    Kisailus D, Choi JH, Weaver JC, Yang WJ, Morse DE (2005) Adv Mater 17:314CrossRefGoogle Scholar
  19. 19.
    Natalio F, Mugnaioli E, Wiens M, Wang X, Schroder HC, Tahir MN, Tremel W, Kolb U, Muller WE (2010) Cell Tissue Res 339:429CrossRefGoogle Scholar
  20. 20.
    Tahir MN, Theato P, Muller WE, Schroder HC, Borejko A, Faiss S, Janshoff A, Huth J, Tremel W (2005) Chem Commun 44:5533CrossRefGoogle Scholar
  21. 21.
    Muller WE, Wang X, Cui FZ, Jochum KP, Tremel W, Bill J, Schroder HC, Natalio F, Schlossmacher U, Wiens M (2009) Appl Microbiol Biotechnol 83:397CrossRefGoogle Scholar
  22. 22.
    Schroder HC, Brandt D, Schlossmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Muller WE (2007) Naturwissenschaften 94:339CrossRefGoogle Scholar
  23. 23.
    Schroder HC, Wang X, Tremel W, Ushijima H, Muller WE (2008) Nat Prod Rep 25:455CrossRefGoogle Scholar
  24. 24.
    Reyes-Grajeda JP, Jauregui-Zuniga D, Batina N, Salmon-Salazar M, Moreno A (2002) J Cryst Growth 234:227CrossRefGoogle Scholar
  25. 25.
    Sanchez-Puig N, Veprintsev DB, Fersht AR (2005) Mol. Cell 17:11CrossRefGoogle Scholar
  26. 26.
    Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Proc Natl Acad Sci USA 96:361CrossRefGoogle Scholar
  27. 27.
    Vinogradova E, Estrada M, Moreno A (2006) J Colloid Interface Sci 298:209CrossRefGoogle Scholar
  28. 28.
    Mann K, Siedler F (2004) Biochim Biophys Acta 1696:41Google Scholar
  29. 29.
    Lanier WP (1986) Palaios 1:525CrossRefGoogle Scholar
  30. 30.
    Schopf JW, Walter MR (1983) Archean microfossils: new evidence of ancient microbes. Princeton University Press, PrincetonGoogle Scholar
  31. 31.
    Wang T, Che R, Li W, Mi R, Shao Z (2011) Cryst Growth Des 11:2164CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • N. Sánchez-Puig
    • 1
  • E. Guerra-Flores
    • 1
  • F. López-Sánchez
    • 1
  • P. A. Juárez-Espinoza
    • 1
  • R. Ruiz-Arellano
    • 1
  • R. González-Muñoz
    • 2
  • R. Arreguín-Espinosa
    • 1
  • A. Moreno
    • 1
  1. 1.Instituto de Química, Universidad Nacional Autónoma de MéxicoCircuito Exterior, Ciudad UniversitariaMéxicoMéxico
  2. 2.Unidad Multidisciplinaria de Docencia e Investigación-Sisal, Facultad de CienciasUniversidad Nacional Autónoma de México. Ex-Sanatorio Rendón PenicheMéridaMéxico

Personalised recommendations