Journal of Materials Science

, Volume 47, Issue 6, pp 2837–2844 | Cite as

Biomimetic formation of crystalline bone-like apatite layers on spongy materials templated by bile salts aggregates

  • Marcos Fernández-Leyes
  • Valeria Verdinelli
  • Natalia Hassan
  • Juan M. Ruso
  • Olga Pieroni
  • Pablo C. Schulz
  • Paula MessinaEmail author


Since the trabecular bone exhibit sponge-like bicontinuity there is a growing interest in the synthesis of spongy-like sieves for the construction of bio-active implantable materials. Here, we propose a one step sol–gel method for the synthesis of bicontinuous pore silica materials using different bile salts aqueous mixtures as templates. The influences of the type and amount of bile salt on the synthesis processes are investigated and correlated with the final material morphology. As a final point, their structural properties are interrelated with their ability to induce a bone-like apatite layer in contact with simulated body fluid (SBF). We have confirmed that under specific template conditions, the synthesized material has an open bio-active macropore structure that is blanched in a 3D-disordered sponge-like network similar than those existed in trabecular bone.


Bile Salt Simulated Body Fluid Amorphous Calcium Phosphate DDAB Calcium Phosphate Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge Universidad Nacional del Sur (PGI 24/ZQ07), Concejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET, PIP-11220100100072), Xunta de Galicia (Project No. PXI20615PN). MFL and VV have fellowships of CONICET. PM is an adjunct researcher of CONICET.

Supplementary material

10853_2011_6113_MOESM1_ESM.doc (14.7 mb)
Negative staining of template BSs/DDAB aqueous mixed systems, characterization by TEM microphotographs. Material chemical reactivity and HA coatings time evolution analysis by FT-IR. EDX microanalysis of HA coatings (DOC 15002 kb)


  1. 1.
    Wang HJ, Wu ZY, Wang YM, Zhu JH (2008) Mat Lett 62:422CrossRefGoogle Scholar
  2. 2.
    Crossland EJW, Kamperman M, Nedecu M, Ducati C, Wiesner U, Smilgies D-M, Toombes GES, Hillmyer MA, Ludwings S, Steiner U, Snaith HJA (2009) Nano Lett 9:2807CrossRefGoogle Scholar
  3. 3.
    Stewart-Sloan CR, Thomas EL (2011) Eur Polym J 47:630CrossRefGoogle Scholar
  4. 4.
    Wang Y, He C, Xing W, Li F, Tong L, Chen Z, Liao X, Steinhardt M (2010) Adv Mat 22:2068CrossRefGoogle Scholar
  5. 5.
    Stevens MM (2008) Mat Today 11:18CrossRefGoogle Scholar
  6. 6.
    Mouriño V, Boccaccini AR (2010) J R Soc Interf 7:209CrossRefGoogle Scholar
  7. 7.
    Jinnai H, Nishikawa Y, Ito M, Smith SD, Agard DA, Spontak RJ (2002) Adv Mater 14:1615CrossRefGoogle Scholar
  8. 8.
    Green D, Walsh D, Mann S, Oreffo ROC (2002) Bone 30:810 (and references therein)CrossRefGoogle Scholar
  9. 9.
    Yun H-S, Kim S-E, Hyun Y-T, Heo S-J, Shin J-W (2008) J Biomed Mat Res Part B 87B:374CrossRefGoogle Scholar
  10. 10.
    Wang J, Zhao H, Zhou S, Lu X, Feng B, Duan C, Weng J (2008) J Biomed Mat Research Part A 90A:401CrossRefGoogle Scholar
  11. 11.
    Mukhopadhyay S, Maitra U (2007) Curr Sci 87:1666Google Scholar
  12. 12.
    Madenci D, Egelhaaf SU (2010) Curr Opin Colloid Interf Sci 15:109CrossRefGoogle Scholar
  13. 13.
    Zhao D, Yang P, Huo Q, Chmelka BF, Stucky GD (1998) Curr Opin Solid State Mater 3:111CrossRefGoogle Scholar
  14. 14.
    Feng J, Huo Q, Petroff PM, Stucky GD (1997) Appl Phys Lett 71:620CrossRefGoogle Scholar
  15. 15.
    Yang H, Ozin GA, Kresge CT (1998) Adv Mater 10:883CrossRefGoogle Scholar
  16. 16.
    Garidel P, Hildebrand A, Knauf K, Blume A (2007) Molecules 12:2292CrossRefGoogle Scholar
  17. 17.
    Hjelm RP, Schteingart CD, Hofmann AF, Thiyagarajan P (2000) J Phys Chem B 104:197CrossRefGoogle Scholar
  18. 18.
    Warren DB, Amley MU, Hamley A, Boyd BJ (2011) Langmuir 27:9528Google Scholar
  19. 19.
    Nguyen T-H, Hanley T, Porter CJH, Boyd BJ (2011) J Control Rel 153:180 (and references therein)CrossRefGoogle Scholar
  20. 20.
    Murgia S, Falchi AM, Mano M, Lampis S, Angius R, Carnerup AM, Schmidt J, Diaz G, Giacca M, Talmon Y, Monduzzi M (2010) J Phys Chem B 114:3518 (and references therein)CrossRefGoogle Scholar
  21. 21.
    Messina PV, Prieto G, Ruso JM, Fernadez-Leyes M, Schulz P, Sarmiento F (2010) Colloids Surf B 75:34CrossRefGoogle Scholar
  22. 22.
    Messina PV, Ruso JM, Prieto G, Fernadez-Leyes M, Schulz P, Sarmiento F (2010) Colloid Polym Sci 288:449CrossRefGoogle Scholar
  23. 23.
    Fernández-Leyes M, Messina PV, Schulz PC (2011) Colloid Polym Sci 289:179CrossRefGoogle Scholar
  24. 24.
    Messina PV, Morini MA, Schulz PC (2004) Colloid Polym Sci 282:1063CrossRefGoogle Scholar
  25. 25.
    Kokubo T, Kushitani H, Sakka S, Kisugi T, Yamamuro T (1990) J Biomed Mater Res 24:721CrossRefGoogle Scholar
  26. 26.
    Messina P, Schulz PC (2006) J Colloid Interf Sci 299:305 (and references therein)CrossRefGoogle Scholar
  27. 27.
    Fernández-Leyes M, Messina PV, Schulz PC (2007) J Colloid Interf Sci 314:659CrossRefGoogle Scholar
  28. 28.
    Fernández-Leyes M, Schulz PC, Messina PV (2008) Colloids Surf A 329:24CrossRefGoogle Scholar
  29. 29.
    Feitosa E (2010) J Colloid Interf Sci 344:70 (and references therein)CrossRefGoogle Scholar
  30. 30.
    Messina P, Morini MA, Schulz PC, Ferrat G (2002) Colloid Polym Sci 280:328CrossRefGoogle Scholar
  31. 31.
    Schulz PC, Messina PV, Morini MA, Vuano B (2002) Colloid Polym Sci 280:1104CrossRefGoogle Scholar
  32. 32.
    Marques EF, Khan A, Lindman B (2002) Thermochim Acta 394:31CrossRefGoogle Scholar
  33. 33.
    Feitosa E, Bonsái NM, Loh W (2006) Langmuir 22:4512CrossRefGoogle Scholar
  34. 34.
    Mc Grath KM, Dabbs DM, Yao N, Aksay IA, Gruner SM (1997) Science 277:552CrossRefGoogle Scholar
  35. 35.
    Kim SS, Zhang W, Pinnavaia TJ (1998) Science 282:1302CrossRefGoogle Scholar
  36. 36.
    Israelachvili J (1994) Colloids Surf A 91:1CrossRefGoogle Scholar
  37. 37.
    Che S, Li H, Lim S, Sakamoto Y, Terasaki O, Tatsumi T (2005) Chem Mat 17:4103CrossRefGoogle Scholar
  38. 38.
    Nagarajan R (2002) Langmuir 18:31CrossRefGoogle Scholar
  39. 39.
    Kokubo T, Takadama H (2006) Biomaterials 27:2907CrossRefGoogle Scholar
  40. 40.
    Silva de Medeiros W, Varella de Oliveira M, Pereira LC, Calixto de Andrade M (2008) Artif Organs 32:277CrossRefGoogle Scholar
  41. 41.
    Shirtliff VJ, Hench LL (2003) J Mater Sci 38:4697. doi: 10.1023/A:1027414700111 CrossRefGoogle Scholar
  42. 42.
    Horcajada P, Ramile A, Boulahya K, González-Calbet J, Vallet-Regí M (2004) Solid State Sci 6:1295CrossRefGoogle Scholar
  43. 43.
    Gu YW, Tay BY, Lim CS, Yong MS (2006) Nanotechnology 17:2212 (and references therein)CrossRefGoogle Scholar
  44. 44.
    Martinetti R, Dolcini L, Merello L, Scaglione S, Quarto R, Pressato D (2007) Key Eng Mat 330–332:943CrossRefGoogle Scholar
  45. 45.
    Panda RN, Hsieh MF, Chung RJ, Chin TS (2004) J Phys Chem of Solids 64:193CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marcos Fernández-Leyes
    • 1
    • 2
  • Valeria Verdinelli
    • 1
    • 2
  • Natalia Hassan
    • 3
  • Juan M. Ruso
    • 3
  • Olga Pieroni
    • 1
    • 2
  • Pablo C. Schulz
    • 1
    • 2
  • Paula Messina
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.INQUISUR-CONICETBahía BlancaArgentina
  3. 3.Soft Matter and Molecular Biophysics Group, Department of Applied PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations