Journal of Materials Science

, Volume 47, Issue 6, pp 2700–2711 | Cite as

Hydroxyethylcellulose surface treatment of natural fibres: the new ‘twist’ in yarn preparation and optimization for composites applicability

  • Darshil U. Shah
  • Peter J. Schubel
  • Peter Licence
  • Mike J. CliffordEmail author


The use of low-cost renewable natural fibres as reinforcements for structural composites is attractive but requires specific considerations over that of textile industry requirements. Textile yarns are twisted for processability and increased tensile strength. However, reinforcements employing twisted yarns produce poorer composites due to hindered yarn impregnation, inadequate wettability and compromised orientation efficiency. Whilst assessing the physical properties of select plant fibre yarns that determine reinforcement/composite properties, a strong correlation between yarn twist and compaction is observed. This manuscript also examines a novel plant fibre treatment method using hydroxyethylcellulose (HEC). HEC treatment not only enables intra- and inter-yarn binding thus allowing easy preparation of aligned fabrics, but also improves yarn mechanical properties whilst maintaining physical properties such as low twist. It is noticed that low twist yarns are more responsive to HEC treatment; the tenacity and stiffness of low twist flax is observed to increase by 230 and 75%, respectively.


Twist Angle Packing Fraction Flax Fibre Plant Fibre Yarn Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project is supported by the Nottingham Innovative Manufacturing Research Centre (EPSRC, project title ‘Sustainable manufacture of wind turbine blades using natural fibre composites and optimal design tools’). We also thank Janata and Sadat Jute Ltd., Safilin and Biotex Netcomposites for the supply of quality plant fibre yarns.


  1. 1.
    Pickering K (2008) Properties and performance of natural-fibre composites. Woodhead Publishing Ltd, CambridgeshireCrossRefGoogle Scholar
  2. 2.
    Bledzki A, Sperber VE, Faruk O (2002) Natural wood and fibre reinforcement in polymers. Rapra Technology Ltd, ShrewsburyGoogle Scholar
  3. 3.
    Auto body made of plastics resists denting under hard blows (1941). Popular Mechanics Magazine, vol 76, no 6Google Scholar
  4. 4.
    A fighter fuselage in synthetic material (1945) vol 34. Aero Research Limited, Duxford, CambridgeGoogle Scholar
  5. 5.
    Latere Dwanisa JP, Mohanty AK, Drzal LT, Misra M (2002) In: Proceedings of 9th Annual Global Plastics Environmental Conference, Michigan, USA, 2002Google Scholar
  6. 6.
    Lewin M (2007) Handbook of fiber chemistry, 3rd edn. Taylor & Francis Group, LLC, Boca RatonGoogle Scholar
  7. 7.
    John M, Anandjiwala RD (2008) Polym Compos 29:187CrossRefGoogle Scholar
  8. 8.
    Vuure A (2008) Natural fibre composites: recent developments. In: Innovation for Sustainable Production (i-SUP), Bruges, BelgiumGoogle Scholar
  9. 9.
    Joshi S, Drzal LT, Mohanty AK (2003) In: International LCA Conference, Seattle, USAGoogle Scholar
  10. 10.
    Wambua P, Ivens J, Verpoest I (2003) Compos Sci Technol 63:1259CrossRefGoogle Scholar
  11. 11.
    Witten E (2008) The composites market in europe: market developments, challenges, and opportunities. Industrievereinigung Verstärkte KunststoffeGoogle Scholar
  12. 12.
    Bledzki A, Faruk O, Sperber VE (2006) Macromol Mater Eng 291:449CrossRefGoogle Scholar
  13. 13.
    Malkapuram R, Kumar V, Negi YS (2009) J Reinf Plast Compos 28(10):1169CrossRefGoogle Scholar
  14. 14.
    van den Oever M, Bos HL, van Kemenade MJJM (2000) Appl Compos Mater 7:387CrossRefGoogle Scholar
  15. 15.
    Garkhail S, Heijenrath RWH, Peijs T (2000) Appl Compos Mater 7:351CrossRefGoogle Scholar
  16. 16.
    Kalia S, Kaith BS, Kaur I (2009) Polym Eng Sci 49:1253CrossRefGoogle Scholar
  17. 17.
    Bledzki A, Gassan J (1999) Prog Polym Sci 24:221CrossRefGoogle Scholar
  18. 18.
    Mwaikambo L, Ansell MP (2002) J Appl Polym Sci 84:2222CrossRefGoogle Scholar
  19. 19.
    Baley C (2002) Compos Part A Appl Sci Manuf 33:939CrossRefGoogle Scholar
  20. 20.
    Espert A, Vilaplana F, Karlsson S (2004) Compos Part A Appl Sci Manuf 35:1267CrossRefGoogle Scholar
  21. 21.
    Basu A (2009) Indian J Fibre Textile Res 34:287Google Scholar
  22. 22.
    Mwaikambo L, Ansell MP (2001) J Mater Sci Lett 20(23):2095CrossRefGoogle Scholar
  23. 23.
    Mukherjee P, Satyanarayana KG (1986) J Mater Sci 21:4162. doi: 10.1007/BF01106524 CrossRefGoogle Scholar
  24. 24.
    Truong M et al (2009) J Textile Inst 100(6):525CrossRefGoogle Scholar
  25. 25.
    Goutianos S, Peijs T (2003) Adv Compos Lett 12(6):237Google Scholar
  26. 26.
    Goutianos S et al (2006) Appl Compos Mater 13(4):199CrossRefGoogle Scholar
  27. 27.
    Zhang L, Miao M (2010) Compos Sci Technol 70:130CrossRefGoogle Scholar
  28. 28.
    Baley C et al (2006) Compos Part A Appl Sci Manuf 37(10):1626CrossRefGoogle Scholar
  29. 29.
    Aranberri-Askargorta I, Lampke T, Bismarck A (2003) J Colloid Interf Sci 263:580CrossRefGoogle Scholar
  30. 30.
    Page S et al (2000) J Colloid Interf Sci 222:55CrossRefGoogle Scholar
  31. 31.
    Weyenberg I et al (2006) Compos Part A Appl Sci Manuf 37:1368CrossRefGoogle Scholar
  32. 32.
    Ray D et al (2001) Bull Mater Sci 24(2):129CrossRefGoogle Scholar
  33. 33.
    Li Y, Mai Y, Ye L (2000) Compos Sci Technol 60(11):2037CrossRefGoogle Scholar
  34. 34.
    Sreekala M et al (2000) Appl Compos Mater 7:295CrossRefGoogle Scholar
  35. 35.
    Baiardo M, Zini E, Scandola M (2004) Compos Part A Appl Sci Manuf 35:703CrossRefGoogle Scholar
  36. 36.
    Rude T, Strait LH, Ruhala LA (2000) J Compos Mater 34(22):1948CrossRefGoogle Scholar
  37. 37.
    Ghosh I (1999) Thesis: Lyocell fiber-reinforced cellulose ester composites - manufacturing considerations and properties, Virginia Polytechnic Institute and State University, Blacksburg, VA, USAGoogle Scholar
  38. 38.
    Madsen B et al (2007) Compos Part A Appl Sci Manuf 38:2194CrossRefGoogle Scholar
  39. 39.
    Bonnafous C, Touchard F, Chocinski-Arnault L (2010) Paper presented at the 14th International Conference on Experimental Mechanics, Poitiers, FranceGoogle Scholar
  40. 40.
    Bachtiar D, et al. (2010) Paper presented at the 9th National Symposium on Polymeric Materials, Putrajaya, MalaysiaGoogle Scholar
  41. 41.
    Silva F, Chawla N, Filho RDDT (2008) Compos Sci Technol 68:3438CrossRefGoogle Scholar
  42. 42.
    Virk A, Hall W, Summerscales J (2010) Compos Sci Technol 70(6):995CrossRefGoogle Scholar
  43. 43.
    Pratten N (1981) J Mater Sci 16(7):1737CrossRefGoogle Scholar
  44. 44.
    Yilmaz D et al (2007) Textile Res J 77(9):661CrossRefGoogle Scholar
  45. 45.
    Gassan J, Bledzki AK (2001) J Appl Polym Sci 82:1417CrossRefGoogle Scholar
  46. 46.
    Carpenter J et al (2007) Adv Mater Res 29–30:263CrossRefGoogle Scholar
  47. 47.
    McLaughlin E, Tait RA (1980) J Mater Sci 15:89. doi: 10.1007/BF00552431 CrossRefGoogle Scholar
  48. 48.
    Thygesen A (2006) Thesis: Properties of hemp fibre polymer composites- An optimisation of fibre properties using novel defibration methods and fibre characterisation, The Royal Agricultural and Veterinary University of Denmark (KVL)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Darshil U. Shah
    • 1
  • Peter J. Schubel
    • 1
  • Peter Licence
    • 2
  • Mike J. Clifford
    • 1
    Email author
  1. 1.Polymer Composites Group, Division of Materials, Mechanics and Structures, Faculty of EngineeringThe University of NottinghamNottinghamUK
  2. 2.School of ChemistryThe University of NottinghamNottinghamUK

Personalised recommendations