Journal of Materials Science

, Volume 47, Issue 6, pp 2695–2699

Indentation strength method to determine the fracture toughness of La0.58Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ

  • B. X. Huang
  • A. Chanda
  • R. W. Steinbrech
  • J. Malzbender


The temperature-dependent fracture toughness of brittle ceramics can be conveniently assessed from bending tests of specimens with defined cracks introduced by indentation. However, the validity of this indentation strength in bending method (ISM) depends critically on the correct consideration of the residual stress induced by the indentation process. The ISM has been applied to La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) and, for comparison, on Ba0.5Sr0.5Co0.2Fe0.8O3-δ (BSCF) perovskite. LSCF with rhombohedral phase exhibits ferro-elastic behavior at ambient temperature, whereas BSCF deforms linear-elastically. Pre-indented specimens of both perovskites were fractured at room temperature in biaxial bending, some of them after an additional annealing step. The fracture toughness values of BSCF match reasonably well when determined with equations which consider the presence or absence of residual indentation stress. Interestingly, annealing has little influence on the apparent toughness results obtained for rhombohedral LSCF, which appears to be related with stress relaxation by ferro-elastic deformation.


  1. 1.
    Huang BX, Malzbender J, Steinbrech RW, Grychtol P, Schneider CM, Singheiser L (2009) Appl Phys Lett 95:051901CrossRefGoogle Scholar
  2. 2.
    Huang AS, Lin YS, Yang WS (2004) J Membr Sci 245:41CrossRefGoogle Scholar
  3. 3.
    Barsoum MW (2003) Fundamentals of ceramics, 2nd edn. Institute Of Physics Publishing (Gb), LondonCrossRefGoogle Scholar
  4. 4.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533CrossRefGoogle Scholar
  5. 5.
    Chantikul P, Anstis GR, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:539CrossRefGoogle Scholar
  6. 6.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  7. 7.
    Malzbender J, Toonder JMJD, Balkenende AR, de With G (2002) Mater Sci Eng R 36:47CrossRefGoogle Scholar
  8. 8.
    Marshall DB, Lawn BR (1977) J Am Ceram Soc 60:86CrossRefGoogle Scholar
  9. 9.
    Quinn GD, Bradt RC (2007) J Am Ceram Soc 90:673CrossRefGoogle Scholar
  10. 10.
    Fessler H, Fricker DC (1984) J Am Ceram Soc 67:582CrossRefGoogle Scholar
  11. 11.
    Fett T, Rizzi G, Guin JP, Wiederhorn SM (2007) J Mater Sci 42:393. doi:10.1007/s10853-006-1102-8 CrossRefGoogle Scholar
  12. 12.
    Ingelstrom N, Nordberg H (1974) Eng Fract Mech 6:597CrossRefGoogle Scholar
  13. 13.
    Petrovic JJ, Dirks RA, Jacobson LA, Mendiratta MG (1976) J Am Ceram Soc 59:177CrossRefGoogle Scholar
  14. 14.
    Marshall DB, Lawn BR (1979) J Mater Sci 14:2001. doi:10.1007/BF00551043 CrossRefGoogle Scholar
  15. 15.
    Fett T, Kounga Njiwa AB, Rödel J (2005) Eng Fract Mech 72:647CrossRefGoogle Scholar
  16. 16.
    Kountouros P, Förthmann R, Naoumidis A, Stochniol G, Syskakis E (1995) Ionics 1:40CrossRefGoogle Scholar
  17. 17.
    Huang BX, Malzbender J, Steinbrech RW, Wessel E, Penkalla HJ, Singheiser L (2010) J. Membr Sci 349:183CrossRefGoogle Scholar
  18. 18.
    Freiman S, Mecholsky J (2010) J Mater Sci 45:4063. doi:10.1007/s10853-010-4491-7 CrossRefGoogle Scholar
  19. 19.
    Albayrak IC, Basu S, Sakulich A, Yeheskel O, Barsoum MW (2010) J Am Ceram Soc 93:2028Google Scholar
  20. 20.
    Asmani M, Kermel C, Leriche A, Ourak M (2001) J Eur Ceram Soc 21:1081CrossRefGoogle Scholar
  21. 21.
    Feng W, Yan D, He J, Zhang G, Chen G, Gu W, Yang S (2005) Appl Surf Sci 243:204CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • B. X. Huang
    • 1
  • A. Chanda
    • 2
  • R. W. Steinbrech
    • 1
  • J. Malzbender
    • 1
  1. 1.Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Mechanical Engineering DepartmentJadavpur UniversityKolkataIndia

Personalised recommendations