Journal of Materials Science

, Volume 47, Issue 6, pp 2687–2694 | Cite as

Effects of Nb2O5 addition on the microstructure, electrical, and mechanical properties of PZT/ZnO nanowhisker piezoelectric composites

  • Da-Wei Wang
  • Jie Yuan
  • Hong-Bo Li
  • Ran Lu
  • Quan-Liang Zhao
  • De-Qing Zhang
  • Mao-Sheng Cao
Article

Abstract

Nb2O5-modified PZT/ZnO nanowhisker (denoted as PZT/ZnOw–Nb2O5) piezoelectric composites were prepared by a solid state sintering technique. Effects of Nb2O5 addition on the microstructure, electrical, and mechanical properties of the PZT/ZnOw composites were investigated. With increasing Nb2O5 content, the grain size of the composites was reduced and the fracture mode changed from intergranular to intragranular gradually. Compared with the PZT/ZnOw composites, the dielectric, piezoelectric, and ferroelectric properties of the PZT/ZnOw–Nb2O5 composites were improved significantly, while mechanical properties were enhanced slightly. The optimum electrical and mechanical properties were achieved for the PZT/ZnOw composites modified with 0.75 wt% Nb2O5 sintered at 1150 °C, with dielectric permittivity εr, piezoelectric coefficient d33, planar electromechanical coupling kp, remnant polarization Pr, fracture toughness KIC, and flexural strength σf being on the order of 4930, 600 pC/N, 0.63, 29.2 μC/cm2, 1.56 MPa m1/2 and 130 MPa, respectively. The Nb2O5-modified PZT/ZnOw piezoelectric composites, with comparable electrical properties and improved mechanical properties than those of commercial PZT-5H ceramics, are promising candidates for further applications.

References

  1. 1.
    Wang ZL, Song JH (2006) Science 312:242CrossRefGoogle Scholar
  2. 2.
    Zhao YN, Cao MS, Jin HB, Zhang L, Qiu CJ (2006) Scr Mater 54:2057CrossRefGoogle Scholar
  3. 3.
    Zhang YL, Yang Y, Zhao JH, Tan RQ, Wang WY, Cui P, Song WJ (2011) J Mater Sci 46:774. doi:10.1007/s10853-010-4813-9 CrossRefGoogle Scholar
  4. 4.
    Cao MS, Shi XL, Fang XY, Jin HB, Hou ZL, Zhou W (2007) Appl Phys Lett 91:203110CrossRefGoogle Scholar
  5. 5.
    Fang XY, Shi XL, Cao MS, Yuan J (2007) J Appl Phys 104:096101CrossRefGoogle Scholar
  6. 6.
    Manohar R, Srivastava AK, Tripathi PK, Singh DP (2011) J Mater Sci 46:5969. doi:10.1007/s10853-011-5556-y CrossRefGoogle Scholar
  7. 7.
    Loh KJ, Chang D (2011) J Mater Sci 46:228. doi:10.1007/s10853-010-4940-3 CrossRefGoogle Scholar
  8. 8.
    Li H, Yang ZP, Wei LL, Chang YF (2009) Mater Res Bull 44:638CrossRefGoogle Scholar
  9. 9.
    Chao XL, Yang ZP, Huang XH, Ma DF, Zeng JH (2009) Curr Appl Phys 9:1283CrossRefGoogle Scholar
  10. 10.
    Zhao QL, Cao MS, Yuan J, Lu R, Wang DW, Zhang DQ (2010) Mater Lett 64:632CrossRefGoogle Scholar
  11. 11.
    Zhao QL, Cao MS, Yuan J, Song WL, Lu R, Wang DW, Zhang DQ (2010) J Alloys Compd 492:264CrossRefGoogle Scholar
  12. 12.
    Shi J, Wang Y, Liu L, Bai HW, Wu J, Jiang CX, Zhou ZW (2009) Mater Sci Eng A 512:109CrossRefGoogle Scholar
  13. 13.
    Rong JL, Wang X, Cao MS, Wang DW, Zhou W, Xu TF (2010) Chin Phys Lett 27:066201CrossRefGoogle Scholar
  14. 14.
    Cao MS, Song WL, Zhou W, Wang DW, Rong JL, Yuan J, Agathopoulos S (2010) Compos Struct 92:2984CrossRefGoogle Scholar
  15. 15.
    Cao MS, Zhou W, Shi XL, Chen YJ (2007) Appl Phys Lett 91:021912CrossRefGoogle Scholar
  16. 16.
    Haertling GH (1999) J Am Ceram Soc 82:797CrossRefGoogle Scholar
  17. 17.
    Shrout TR, Zhang SJ (2007) J Electroceram 19:111Google Scholar
  18. 18.
    Dittmer R, Clemens JF, Schoenecker A, Scheithauer U, Rojas-Ismael M, Grauley T (2010) J Am Ceram Soc 93:2043CrossRefGoogle Scholar
  19. 19.
    Wang DW, Cao MS, Zhang SJ (2011) J Am Ceram Soc 94:3690CrossRefGoogle Scholar
  20. 20.
    Tajima K, Hwang HJ, Sando M, Niihara K (1999) J Eur Ceram Soc 19:1179CrossRefGoogle Scholar
  21. 21.
    Fu R, Zhang TY (2000) J Am Ceram Soc 83:1215CrossRefGoogle Scholar
  22. 22.
    Wang DW, Jin HB, Yuan J, Wen BL, Zhao QL, Zhang DQ, Cao MS (2010) Chin Phys Lett 27:047701CrossRefGoogle Scholar
  23. 23.
    Wu YG, Feng TC (2010) J Alloys Compd 491:252CrossRefGoogle Scholar
  24. 24.
    Hwang HJ, Niihara K (1998) J Mater Sci 33:549. doi:10.1023/A:1004365006839 CrossRefGoogle Scholar
  25. 25.
    Zhang HL, Li JF, Zhang BP (2006) J Am Ceram Soc 89:1300CrossRefGoogle Scholar
  26. 26.
    Zhang HL, Li JF, Zhang BP, Jiang W (2008) Mater Sci Eng A 498:272CrossRefGoogle Scholar
  27. 27.
    Lin HB, Cao MS, Zhao QL, Shi XL, Wang DW, Wang FC (2008) Scr Mater 59:780CrossRefGoogle Scholar
  28. 28.
    Lin HB, Cao MS, Yuan J, Wang DW, Zhao QL, Wang FC (2008) Chin Phys B 17:4323CrossRefGoogle Scholar
  29. 29.
    Cao MS, Wang DW, Yuan J, Lin HB, Zhao QL, Song WL, Zhang DQ (2010) Mater Lett 64:1798CrossRefGoogle Scholar
  30. 30.
    Jiansirisomboon S, Promsawat M, Namsar O, Watcharapasorn A (2009) Mater Chem Phys 117:80CrossRefGoogle Scholar
  31. 31.
    Jiansirisomboon S, Sreesattabud T, Watcharapasorn A (2008) Ceram Int 34:719CrossRefGoogle Scholar
  32. 32.
    Yuan J, Wang DW, Lin HB, Zhao QL, Zhang DQ, Cao MS (2010) J Alloys Compd 504:123CrossRefGoogle Scholar
  33. 33.
    Wang DW, Cao MS, Yuan J, Lin HB, Zhao QL, Zhang DQ (2011) Curr Nanosci 7:227CrossRefGoogle Scholar
  34. 34.
    Wang DW, Cao MS, Yuan J, Zhao QL, Li HB, Lin HB, Zhang DQ (2011) J Mater Sci Mater Electron 22:1393CrossRefGoogle Scholar
  35. 35.
    Reichmann K, Völkl E, Ahrens M, Fleig J, Vötsch J (2010) J Mater Sci 45:1473. doi:10.1007/s10853-009-4105-4 CrossRefGoogle Scholar
  36. 36.
    Goel P, Yadav KL (2007) J Mater Sci 42:3928. doi:10.1007/s10853-006-0416-x CrossRefGoogle Scholar
  37. 37.
    Singh V, Kumar HH, Kharat DK, Hait S, Kulkarni MP (2006) Mater Lett 60:2964CrossRefGoogle Scholar
  38. 38.
    Wang DW, Zhang DQ, Yuan J, Zhao QL, Liu HM, Wang ZY, Cao MS (2009) Chin Phys B 18:2596CrossRefGoogle Scholar
  39. 39.
    Duan N, Cereceda N, Noheda B, Gonzalo JA (1996) J Appl Phys 82:779CrossRefGoogle Scholar
  40. 40.
    Ujma Z, Handerek J, Kugel GE (1997) Ferroelectrics 198:77CrossRefGoogle Scholar
  41. 41.
    Wang DW, Cao MS, Yuan J, Zhao QL, Li HB, Zhang DQ, Agathopoulos S (2011) J Am Ceram Soc 94:647CrossRefGoogle Scholar
  42. 42.
    Garcia JE, Pérez R, Albareda A, Eiras JA (2007) J Eur Ceram Soc 27:4029CrossRefGoogle Scholar
  43. 43.
    Thakur OP, Prakash C (2005) Mod Phys Lett B 19:1783CrossRefGoogle Scholar
  44. 44.
    Pereira M, Peixoto AG, Gomes MJM (2001) J Eur Ceram Soc 21:1353CrossRefGoogle Scholar
  45. 45.
    Zhao YN, Cao MS, Li JG, Shi XL, Chen YJ (2006) J Mater Sci 41:2243. doi:10.1007/s10853-006-7176-5 CrossRefGoogle Scholar
  46. 46.
    IEEE Standards on Piezoelectricity, ANSI/IEEE Standard (1987) No. 176Google Scholar
  47. 47.
    Zhang SJ, Alberta EF, Eitel RE, Randall CA, Shrout TR (2005) IEEE Trans Ultrason Ferroelectr Freq Control 52:2131CrossRefGoogle Scholar
  48. 48.
    Atkin RB, Fulrath RM (1971) J Am Ceram Soc 54:265CrossRefGoogle Scholar
  49. 49.
    Wang DW, Cao MS, Yuan J, Lu R, Li HB, Lin HB, Zhao QL, Zhang DQ (2011) J Alloys Compd 509:6980CrossRefGoogle Scholar
  50. 50.
    Wang DW, Cao MS, Zhang SJ (2012) J Eur Ceram Soc 32:441CrossRefGoogle Scholar
  51. 51.
    Jiansirisomboon S, Watcharapasorn A (2008) Curr Appl Phys 8:48CrossRefGoogle Scholar
  52. 52.
    Rice RW (1997) Treatise on materials science and technology II. Academic Press, New YorkGoogle Scholar
  53. 53.
    Gubernat A, Stobierski L, Łabaj P (2007) J Eur Ceram Soc 27:781CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Da-Wei Wang
    • 1
  • Jie Yuan
    • 2
  • Hong-Bo Li
    • 1
  • Ran Lu
    • 1
  • Quan-Liang Zhao
    • 1
  • De-Qing Zhang
    • 1
  • Mao-Sheng Cao
    • 1
  1. 1.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.School of Information EngineeringCentral University for NationalitiesBeijingChina

Personalised recommendations