Journal of Materials Science

, Volume 47, Issue 6, pp 2675–2686 | Cite as

Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid)

  • Kazi M. Zakir HossainEmail author
  • Ifty Ahmed
  • Andrew J. Parsons
  • Colin A. Scotchford
  • Gavin S. Walker
  • Wim Thielemans
  • Chris D. Rudd


A range of nanocomposites were prepared using cellulose nanowhiskers (CNWs) and poly(lactic acid) (PLA) via a solvent casting process. Acid hydrolysis process was used to produce CNWs from bleached cotton. Structural morphology and surface topography of the CNWs and nanocomposites were examined using transmission (TEM) and scanning electron microscopy. TEM images revealed rod-like whiskers in the nano-scale region which were dispersed within the PLA matrix. The presence of the functional groups of CNWs and PLA were confirmed via FTIR analysis. Tensile tests were conducted on thin films and the nanocomposites containing 1 wt% CNWs showed a 34 and 31% increase in tensile strength and modulus, respectively, compared to pure PLA. The dynamic mechanical analysis showed that the tensile storage modulus also increased in the visco-elastic temperature region with increasing CNWs content in the nanocomposites. Thermogravimetric analysis showed that all the materials investigated were thermally stable from room temperature to 210 °C. A positive effect of CNWs on the crystal nucleation of PLA polymer in the nanocomposites was observed using differential scanning calorimetry and X-ray diffraction analysis. The degradation profiles of the nanocomposites in deionised water over 1 week revealed a mass loss of 1.5–5.6% at alternate temperatures (25, 37 and 50 °C) and at the same conditions the swelling ratio and water uptake were seen to increase with CNWs content in the nanocomposites, which was strongly influenced by the presence of crystalline CNWs.


Storage Modulus Dynamic Mechanical Analysis Nanocomposite Film Tensile Modulus Void Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the financial support provided by the University of Nottingham, Faculty of Engineering (via the Dean of Engineering Research Scholarship for International Excellence).


  1. 1.
    Petersson L, Oksman K (2006) Compos Sci Technol 66:2187. doi: 10.1016/j.compscitech.2005.12.010 CrossRefGoogle Scholar
  2. 2.
    Li Q, Zhou J, Zhang L (2009) J Polym Sci Part B 47:1069. doi: 10.1002/polb.21711 CrossRefGoogle Scholar
  3. 3.
    Azami M, Orang F, Moztarzadeh F (2006) International conference on biomedical and pharmaceutical engineering, p 259Google Scholar
  4. 4.
    Ma ZW, Kotaki M, Inai R, Ramakrishna S (2005) Tissue Eng 11:101CrossRefGoogle Scholar
  5. 5.
    McCullen SD, Ramaswamy S, Clarke LI, Gorga RE (2009) Wiley Interdiscipl Revi Nanomed Nanobiotechnol 1:369. doi: 10.1002/wnan.39 CrossRefGoogle Scholar
  6. 6.
    Updegraff DM (1969) Anal Biochem 32:420. doi: 10.1016/s0003-2697(69)80009-6 CrossRefGoogle Scholar
  7. 7.
    Glasser WG, McCartney BK, Samaranayake G (1994) Biotechnol Prog 10:214. doi: 10.1021/bp00026a011 CrossRefGoogle Scholar
  8. 8.
    Park CH, Kang YK, Im SS (2004) J Appl Polym Sci 94:248. doi: 10.1002/app.20879 CrossRefGoogle Scholar
  9. 9.
    Kümmerer K, Menz J, Schubert T, Thielemans W (2011) Chemosphere 82:1387. doi: 10.1016/j.chemosphere.2010.11.069 CrossRefGoogle Scholar
  10. 10.
    Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y (1989) J Biomed Mater Res 23:125. doi: 10.1002/jbm.820230110 CrossRefGoogle Scholar
  11. 11.
    Luo LH, Wang XM, Zhang YF, Liu YM, Chang PR, Wang Y, Chen Y (2008) J Biomater Sci Polym Ed 19:479. doi: 10.1163/156856208783719491 CrossRefGoogle Scholar
  12. 12.
    Dufresne A, Kellerhals MB, Witholt B (1999) Macromolecules 32:7396. doi: 10.1021/ma990564r CrossRefGoogle Scholar
  13. 13.
    Favier V, Chanzy H, Cavaille JY (1995) Macromolecules 28:6365. doi: 10.1021/ma00122a053 CrossRefGoogle Scholar
  14. 14.
    Habibi Y, Chanzy H, Vignon M (2006) Cellulose 13:679. doi: 10.1007/s10570-006-9075-y CrossRefGoogle Scholar
  15. 15.
    Morin A, Dufresne A (2002) Macromolecules 35:2190. doi: 10.1021/ma011493a CrossRefGoogle Scholar
  16. 16.
    Zuluaga R, Putaux J-L, Restrepo A, Mondragon I, Gañán P (2007) Cellulose 14:585. doi: 10.1007/s10570-007-9118-z CrossRefGoogle Scholar
  17. 17.
    Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C (1995) Polym Adv Technol 6:351CrossRefGoogle Scholar
  18. 18.
    Eichhorn S, Dufresne A, Aranguren M et al (2010) J Mater Sci 45:1. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  19. 19.
    Hepworth DG, Bruce DM (2000) J Mater Sci 35:5861. doi: 10.1023/a:1026716710498 CrossRefGoogle Scholar
  20. 20.
    Henton DE, Gruber PE, Lunt J, Randall J (2005) In: Mohanty AK, Mishra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. Taylor & Francis, Boca Raton, p 524Google Scholar
  21. 21.
    Dorgan JR, Lehermeier H, Mang M (2000) J Environ Polym Degrad 8:1. doi: 10.1023/a:1010185910301 CrossRefGoogle Scholar
  22. 22.
    Drumright RE, Gruber PR et al (2000) Adv Mater 12:1841CrossRefGoogle Scholar
  23. 23.
    Gupta B, Revagade N, Hilborn J (2007) Prog Polym Sci 32:455. doi: 10.1016/j.progpolymsci.2007.01.005 CrossRefGoogle Scholar
  24. 24.
    Ahmed I, Jones I, Parsons A, Bernard J, Farmer J, Scotchford C, Walker G, Rudd C (2011) J Mater Sci Mater Med 22:1825. doi: 10.1007/s10856-011-4361-0 CrossRefGoogle Scholar
  25. 25.
    Buschle-Diller G, Hawkins A, Copper J (2006) Modified fibers with medical and specialty applications. Springer, The Netherlands, p 67CrossRefGoogle Scholar
  26. 26.
    Felfel RM, Ahmed I, Parsons AJ, Haque P, Walker GS, Rudd CD (2010) J Biomater Appl. doi: 10.1177/0885328210384532
  27. 27.
    Parsons AJ, Ahmed I, Haque P, Fitzpatrick B, Niazi MIK, Walker GS, Rudd CD (2009) J Bionic Eng 6:318. doi: 10.1016/s1672-6529(08)60132-8 CrossRefGoogle Scholar
  28. 28.
    Oksman K, Skrifvars M, Selin JF (2003) Compos Sci Technol 63:1317. doi: 10.1016/s0266-3538(03)00103-9 CrossRefGoogle Scholar
  29. 29.
    Ahmed I, Cronin PS, Abou Neel EA, Parsons AJ, Knowles JC, Rudd CD (2009) J Biomed Mater Res B 89:18. doi: 10.1002/jbm.b.31182 Google Scholar
  30. 30.
    Gattin R, Copinet A, Bertrand C, Couturier Y (2002) Int Biodeterior Biodegrad 50:25. doi: 10.1016/s0964-8305(02)00039-2 CrossRefGoogle Scholar
  31. 31.
    Wollerdorfer M, Bader H (1998) Ind Crop Prod 8:105. doi: 10.1016/s0926-6690(97)10015-2 CrossRefGoogle Scholar
  32. 32.
    Martin O, Avérous L (2001) Polymer 42:6209. doi: 10.1016/s0032-3861(01)00086-6 CrossRefGoogle Scholar
  33. 33.
    Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R (2005) Carbohydr Polym 62:130. doi: 10.1016/j.carbpol.2005.07.013 CrossRefGoogle Scholar
  34. 34.
    de Mesquita JOP, Donnici CL, Pereira FV (2010) Biomacromolecules 11:473. doi: 10.1021/bm9011985 CrossRefGoogle Scholar
  35. 35.
    Bleach NC, Nazhat SN, Tanner KE, Kellomäki M, Törmälä P (2002) Biomaterials 23:1579. doi: 10.1016/s0142-9612(01)00283-6 CrossRefGoogle Scholar
  36. 36.
    Petersson L, Kvien I, Oksman K (2007) Compos Sci Technol 67:2535. doi: 10.1016/j.compscitech.2006.12.012 CrossRefGoogle Scholar
  37. 37.
    Bondeson D, Oksman K (2007) Compos Part A Appl Sci Manuf 38:2486. doi: 10.1016/j.compositesa.2007.08.001 CrossRefGoogle Scholar
  38. 38.
    Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Compos Sci Technol 70:1742. doi: 10.1016/j.compscitech.2010.07.005 CrossRefGoogle Scholar
  39. 39.
    Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ (2010) Express Polym Lett 4:26CrossRefGoogle Scholar
  40. 40.
    Sanchez-Garcia M, Lagaron J (2010) Cellulose 17:987. doi: 10.1007/s10570-010-9430-x CrossRefGoogle Scholar
  41. 41.
    Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Int J Biol Macromol 14:170CrossRefGoogle Scholar
  42. 42.
    Labet M, Thielemans W (2011) Cellulose 18:607. doi: 10.1007/s10570-011-9527-x CrossRefGoogle Scholar
  43. 43.
    ASTM D 2734-94 (1997) Annual book of ASTM standards 8(2)Google Scholar
  44. 44.
    Fischer EW, Sterzel HJ, Wegner G (1973) Kolloid Z Z Polym 51:980CrossRefGoogle Scholar
  45. 45.
    Khurma JR, Rohindra DR, Devi R (2005) South Pac J Nat Sci 23:22CrossRefGoogle Scholar
  46. 46.
    Segal SCJJ, Martin AE, Conrad CM (1959) Text Res J 29:786CrossRefGoogle Scholar
  47. 47.
    Weimer PJ, Hackney JM, French AD (1995) Biotechnol Bioeng 48:169. doi: 10.1002/bit.260480211 CrossRefGoogle Scholar
  48. 48.
    Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) Biomacromolecules 9:57. doi: 10.1021/bm700769p CrossRefGoogle Scholar
  49. 49.
    Thielemans W, Warbey CR, Walsh DA (2009) Green Chem 11:531CrossRefGoogle Scholar
  50. 50.
    Heath L, Thielemans W (2010) Green Chem 12:1448CrossRefGoogle Scholar
  51. 51.
    Azizi Samir MAS, Alloin F, Dufresne A (2005) Biomacromolecules 6:612. doi: 10.1021/bm0493685 CrossRefGoogle Scholar
  52. 52.
    Chua P, Dai S, Piggott M (1992) J Mater Sci 27:919. doi: 10.1007/bf01197642 CrossRefGoogle Scholar
  53. 53.
    Jawaid M, Khalil HPSA, Bakar AA, Khanam PN (2011) Mater Des 32:1014. doi: 10.1016/j.matdes.2010.07.033 CrossRefGoogle Scholar
  54. 54.
    Mohan R, Kishore A (1985) J Reinf Plast Compos 4:186. doi: 10.1177/073168448500400203 CrossRefGoogle Scholar
  55. 55.
    Qua E, Hornsby P, Sharma H, Lyons G (2011) J Mater Sci 46:6029. doi: 10.1007/s10853-011-5565-x CrossRefGoogle Scholar
  56. 56.
    Ndazi BS, Karlsson S (2011) Express Polym Lett 5:119. doi: 10.3144/expresspolymlett.2011.13 CrossRefGoogle Scholar
  57. 57.
    Shumigin D, Tarasova E, Krumme A, Meier P (2011) Mater Sci (Medžiagotyra) 17:32Google Scholar
  58. 58.
    Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Biomass Bioenergy 35:146. doi: 10.1016/j.biombioe.2010.08.021 CrossRefGoogle Scholar
  59. 59.
    Roman M, Winter WT (2004) Biomacromolecules 5:1048CrossRefGoogle Scholar
  60. 60.
    Abou-Sekkina MM, Sakran MA, Saafan AA (1986) Ind Eng Chem Prod Res Dev 25:676. doi: 10.1021/i300024a021 CrossRefGoogle Scholar
  61. 61.
    Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K (2006) Polymer 47:7554. doi: 10.1016/j.polymer.2006.08.054 CrossRefGoogle Scholar
  62. 62.
    Shen L, Yang H, Ying J, Qiao F, Peng M (2009) J Mater Sci Mater Med 20:2259. doi: 10.1007/s10856-009-3785-2 CrossRefGoogle Scholar
  63. 63.
    Shanmuganathan K, Capadona JR, Rowan SJ, Weder C (2010) Prog Polym Sci 35:212. doi: 10.1016/j.progpolymsci.2009.10.005 CrossRefGoogle Scholar
  64. 64.
    Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Cellulose 13:261. doi: 10.1007/s10570-005-9039-7 CrossRefGoogle Scholar
  65. 65.
    Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US (2005) Polym Degrad Stab 90:488. doi: 10.1016/j.polymdegradstab.2005.04.006 CrossRefGoogle Scholar
  66. 66.
    Anglès MN, Dufresne A (2000) Macromolecules 33:8344. doi: 10.1021/ma0008701 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kazi M. Zakir Hossain
    • 1
    Email author
  • Ifty Ahmed
    • 1
  • Andrew J. Parsons
    • 1
  • Colin A. Scotchford
    • 1
  • Gavin S. Walker
    • 1
  • Wim Thielemans
    • 2
  • Chris D. Rudd
    • 1
  1. 1.Division of Materials, Mechanics and Structures, Faculty of EngineeringUniversity of NottinghamUniversity Park, NottinghamUK
  2. 2.School of Chemistry and Process and Environmental Research Division, Faculty of EngineeringUniversity of NottinghamUniversity Park, NottinghamUK

Personalised recommendations