Advertisement

Journal of Materials Science

, Volume 47, Issue 6, pp 2630–2636 | Cite as

Structural disorder of ball-milled, nanosized, Fe-doped SnO2: X-ray diffraction and Mössbauer spectroscopy characterization

  • Thiago S. Ribeiro
  • José M. Sasaki
  • Igor F. VasconcelosEmail author
Article

Abstract

Structural characterization of nanosized Fe-doped semiconducting oxide SnO2 is reported. Samples of Sn1−x Fe x O2−y (with x ranging from 0.11 to 0.33) were processed in a planetary ball mill, subsequently HCl-washed to eliminate metallic iron impurities introduced by the milling tools, and characterized by X-ray diffraction and Mössbauer spectroscopy. Results showed that Fe enters the host matrix randomly replacing Sn in octahedral sites regardless of iron concentration. It has been found the presence of oxygen deficient iron sites attributed to the stoichiometric unbalance of precursor materials used in the milling process. It is known that structural features like particle size and residual microstrain are highly affected by the milling process. Values of average particle sizes as calculated by Scherrer’s method alone decreased with increasing Fe concentration. This result was shown, by means of the Williamson-Hall correction method, to be misleading as a large degree of microstrain is expected for mechanically milled powders. In fact, corrected values of average particle sizes turned out to be reasonably homogeneous regardless of iron content and milling time with no consistent trend. Residual microstrain, on the other hand, was found to increase with iron content giving way to the conclusion that broadening of diffraction peaks are mostly due to increasing microstrain as a function of iron doping and milling time. Williamson-Hall analysis also showed a large degree of particle size inhomogeneity. Milling of undoped SnO2 showed that this inhomogeneity is due mostly to doping as opposed to milling.

Keywords

Milling SnO2 Average Particle Size Quadrupole Splitting Milling Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to the Brazilian research agencies Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

References

  1. 1.
    Fukumura F, Toyosaki H, Yamada Y (2005) Semicond Sci Technol 20:S103CrossRefGoogle Scholar
  2. 2.
    Furdyna JK, Schiffer P, Sasaki Y, Potashnik SJ, Liu XY (2000) In: Sadowski ML, Potemski M, Grynberg M (eds) Optical properties of semiconductor nanostructures. Kluwer Academic Publishers, Dordrecht , p 221Google Scholar
  3. 3.
    Colis S, Bouaine A, Moubah R, Schmerber G, Ulhaq-Bouillet C, Dinia A, Daharon L, Petersen J, Becker C (2010) J Appl Phys 108:0539101CrossRefGoogle Scholar
  4. 4.
    Xu Y, Tang Y, Li C, Cao G, Ren W, Xu H, Ren Z (2009) J Alloy Compd 481:837CrossRefGoogle Scholar
  5. 5.
    Prellier W, Fouchet A, Mercey B (2003) J Phys-Condens Mat 15:R1583CrossRefGoogle Scholar
  6. 6.
    Bak YR, Kim GO, Hwang MJ, Cho KK, Kim KW, Ryu KS (2011) J Sol-Gel Sci Technol 58:518CrossRefGoogle Scholar
  7. 7.
    Li B, Luo L, Xiao T, Hu X, Lu L, Wang J, Tang Y (2011) J Alloy Compd 509:2186CrossRefGoogle Scholar
  8. 8.
    Im JS, Park S, Jeon JW, Lim KS (2011) Sol Energ Mat Sol C 95:150CrossRefGoogle Scholar
  9. 9.
    Kolentsov K, Yourukova L, Zheliaskova A, Rachkova A (2004) Bulg J Phys 31:87Google Scholar
  10. 10.
    Vaishampayan MV, Deshmukh RG, Walke P, Mulla IS (2008) Mater Chem Phys 109:230CrossRefGoogle Scholar
  11. 11.
    Du N, Zhang H, Chen B, Ma X, Huang X, Tu J, Yang D (2009) Mater Res Bull 44:211CrossRefGoogle Scholar
  12. 12.
    Galatsis K, Cukrov L, Wlodarski W, McCormick P, Kalantar-zadeh K, Comini E, Sberveglieri G (2003) Sensor Actuat B Chem 93:562CrossRefGoogle Scholar
  13. 13.
    Cabrera AF, Mudarra-Navarro AM, Rodriguez-Torres CE, Sanchez FH (2007) Physica B 398:215CrossRefGoogle Scholar
  14. 14.
    Torres CER, Cabrera AF, Sanchez FH (2007) Physica B 389:176CrossRefGoogle Scholar
  15. 15.
    Bilovol V, Mudarra-Navarro AM, Cabrera AF, Rodriguez-Torres CE, Sanchez FH (2007) Hyperfine Interact 179:381CrossRefGoogle Scholar
  16. 16.
    Sanchez LC, Calle AM, Arboleda JD, Osorio J, Nomura K, Barrero CA (2008) Microeletron J 39:1320CrossRefGoogle Scholar
  17. 17.
    Sanchez LC, Beltran JJ, Osorio J, Calle AM, Barrero CA (2010) Hyperfine Interact 195:185CrossRefGoogle Scholar
  18. 18.
    Fang L, Zu X, Liu C, Li Z, Peleckis G, Zhu S, Liu H, Wang L (2010) J Alloy Compd 491:679CrossRefGoogle Scholar
  19. 19.
    Sorescu M, Diamandescu L, Tarabasanu-Mihaila D, Teodorescu VS, Howard BH (2004) J Phys Org Chem 65:1021Google Scholar
  20. 20.
    Liu JF, Lu MF, Chai P, Fu L, Wang ZL, Cao XQ, Menga J (2007) J Magn Magn Mat 317:1CrossRefGoogle Scholar
  21. 21.
    Sakuma J, Nomura K, Barrero C, Takeda M (2007) Thin Solid Films 515:8653CrossRefGoogle Scholar
  22. 22.
    Beltran JJ, Sanchez LC, Osorio J, Tirado L, Baggio-Saitovitch EM, Barrero CA (2010) J Mater Sci 45:5002. Doi: 10.1007/s10853-010-4454-z CrossRefGoogle Scholar
  23. 23.
    Nomura K, Barrero C, Sakuma J, Takeda M (2006) Czech J Phys 56:75CrossRefGoogle Scholar
  24. 24.
    Rani S, Roy SC, Kararc N, Bhatnagar MC (2007) Solid State Commun 141:214CrossRefGoogle Scholar
  25. 25.
    Rani S, Roy SC, Bhatnagar MC (2007) Sensor Actuat B Chem 122:204CrossRefGoogle Scholar
  26. 26.
    Thurber A, Reddy KM, Punnoose A (2009) J Appl Phys 105:07E706CrossRefGoogle Scholar
  27. 27.
    Bilovol V, Navarro AMM, Torres CER, Sanchez FH, Cabrera AF (2009) Physica B 404:2834CrossRefGoogle Scholar
  28. 28.
    Xiaoyan P, Dongmei J, Yan L, Xeuming M (2006) J Magn Magn Mater 305:388CrossRefGoogle Scholar
  29. 29.
    Bleicher L, Sasaki JM, Paiva-Santos CO (2000) J Appl Crystallogr 33:1189CrossRefGoogle Scholar
  30. 30.
    Williamson GK, Hall WH (1953) Acta Metall Mater 1:22CrossRefGoogle Scholar
  31. 31.
    Stokes AR, Wilson AJC (1943) Proc Cambridge Phil Soc 40:197CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Thiago S. Ribeiro
    • 1
  • José M. Sasaki
    • 2
  • Igor F. Vasconcelos
    • 1
    Email author
  1. 1.Departamento de Engenharia Metalúrgica e de MateriaisUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations