Journal of Materials Science

, Volume 47, Issue 10, pp 4236–4250 | Cite as

Carbon fibres from cellulosic precursors: a review

  • Ahu Gümrah Dumanlı
  • Alan H. WindleEmail author


The focus of this review is primarily on the sequence of structural changes at micro and molecular level during carbonization of cellulosic fibres. The influence of various operational parameters such as the pyrolytic temperature and the stabilization agents also discussed as is the effect of the initial properties of the cellulose fibre on the final properties of the carbon fibre.


Carbon Fibre Bacterial Cellulose Cellulose Fibre Fibre Axis Activate Carbon Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Alternative current


Activated carbon fibre


Bacterial cellulose


Carbon-13 nuclear magnetic resonance spectroscopy


Carbon fibre


Carbon nanotube


Cross polarized magic angle spinning


Chemical shift anisotropy


Direct current


Degree of polymerization


Fourier transform infra-red spectroscopy


Heat treatment temperature


Multi wall carbon nanotube


Tensile strength unit expressed in force divided by linear density which is numerically equivalent to Gpa/specific gravity






Scanning electron microscope


Scanning tunneling microscopy


Single wall carbon nanotube


Linear density unit which is equal to the grams per kilometre of material


Thermal gravimetric analysis


X-ray diffraction



The authors wish to thank Dr Ian Graveson of SAPPI (South African Paper and Pulp Industry) for his advice and support, Dr S. Eichhorn for helpful discussions and SAPPI for funding.


  1. 1.
    Edison TA (1892) US Patent 470925Google Scholar
  2. 2.
    Bacon R (1959) US Patent 2,957,756Google Scholar
  3. 3.
    Roger B, Cranch George E, Moyer Jr, Ralph O, Watts Willie H (1967) US Patent 3305315Google Scholar
  4. 4.
    Schalamon WA, Bacon R (1973) US Patent 3716331Google Scholar
  5. 5.
    [5] Shindo A (1961) Report from the Osaka Industrial Research Institute no. 317, OsakaGoogle Scholar
  6. 6.
    Morgan P (2005) Carbon fibers and their composites. CRC Press, Boca RatonCrossRefGoogle Scholar
  7. 7.
    Huang X (2009) Materials 2:2369CrossRefGoogle Scholar
  8. 8.
    Cohn SM, Das S (1998) A cost assessment of conventional PAN carbon fiber production technology. Energy Division, Oak Ridge National Laboratory, TennesseeGoogle Scholar
  9. 9.
    Graham KJ (2009) DoE advances lower-cost carbon fiber R&D, Composites Technology, 4 Apr 2009Google Scholar
  10. 10.
    Wu Q, Pan D (2002) Text Res J 72:405CrossRefGoogle Scholar
  11. 11.
    Zhang H, Guo L, Shao H, Hu X (2006) J Appl Polym Sci 99:65CrossRefGoogle Scholar
  12. 12.
    Watt W (1985) In: Kelly A, Rabotnov YN (eds) Handbook of composites, vol I. Elsevier Science Publishers B. V., HollandGoogle Scholar
  13. 13.
    Watt W (1970) Proc R Soc Lond Ser A Math Phys Sci 319:5CrossRefGoogle Scholar
  14. 14.
    Edie DD, Fox NK, Barnett BC, Fain CC (1986) Carbon 24:477CrossRefGoogle Scholar
  15. 15.
    Edie DD (1998) Carbon 36:345CrossRefGoogle Scholar
  16. 16.
    Knibbs RH (1971) J Microsc Oxf 94:273CrossRefGoogle Scholar
  17. 17.
    Bright AA, Singer LS (1979) Carbon 17:59CrossRefGoogle Scholar
  18. 18.
    Franklin R (1951) Proc R Soc Lond A 209:196CrossRefGoogle Scholar
  19. 19.
    Franklin R (1951) Acta Crystallogr A 4:253CrossRefGoogle Scholar
  20. 20.
    Franklin RE (1950) J Chim Phys Physico Chim Biol 47:573Google Scholar
  21. 21.
    Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Cellulose 11:475CrossRefGoogle Scholar
  22. 22.
    Minus M, Kumar S (2005) JOM J Miner Met Mater Soc 57:52CrossRefGoogle Scholar
  23. 23.
    Bahl OP (1998) In: Donnet JB et al. (eds) Carbon fibers. Marcel Dekker, New YorkGoogle Scholar
  24. 24.
    Bacon R, Modlen GF, Frank C, McEnaney B, Blakeley TH, Manfre G (1980) Phil Trans Roy Soc Lond Math Phys Sci 294:437CrossRefGoogle Scholar
  25. 25.
    Davidson JA, Jung HT, Hudson SD, Percec S (2000) Polymer 41:3357CrossRefGoogle Scholar
  26. 26.
    Paiva MC, Kotasthane P, Edie DD, Ogale AA (2003) Carbon 41:1399CrossRefGoogle Scholar
  27. 27.
    Toray Carbon Fibers America Inc (2010)
  28. 28.
  29. 29.
    SOHIM,Republican Unitary Enterprise Svetlogorsk Production Association (2010) Khimvolokno.
  30. 30.
    Peng S, Shao H, Hu X (2003) J Appl Polym Sci 90:1941CrossRefGoogle Scholar
  31. 31.
    Ford CE, Mitchell CV (1963) UNION CARBIDE CORP fibrous graphite. US Patent 3,107,152Google Scholar
  32. 32.
    Richard B, Millington LA, Robert C (1967) Process of graphitizing “polynosic” regenerated cellulose fibrous textile and resulting fibrous graphite textile. US Pat 3322489Google Scholar
  33. 33.
    Yoneshiga I, Teranishi H (1970) Jap. Pat. Specification 2774/70 1970Google Scholar
  34. 34.
    Zeng F, Pan D, Pan N (2005) J Inorg Org Polym Mater 15:261CrossRefGoogle Scholar
  35. 35.
    McCorsley CC (1981) US Patent no. 4,246,221Google Scholar
  36. 36.
    Chanzy H, Paillet M, Hagege R (1990) Polymer 31:400CrossRefGoogle Scholar
  37. 37.
    Koslow EE (2007) US Patent 7,296,691Google Scholar
  38. 38.
    Wu Q-l, Gong J-h, Zhang Z-h, Ding P (2007) New Carbon Mater 22:47Google Scholar
  39. 39.
    Tomlinson JB, Theocharis CR (1992) Carbon 30: 907Google Scholar
  40. 40.
    Kim D-Y, Nishiyama Y, Wada M, Kuga S (2001) Cellulose 8:29CrossRefGoogle Scholar
  41. 41.
    Tang MM, Bacon R (1964) Carbon 2:211CrossRefGoogle Scholar
  42. 42.
    Carrillo F, Defays B, Colom X, Suñol J, López-Mesas M (2009) J Therm Anal Calorim 97:945CrossRefGoogle Scholar
  43. 43.
    Cross CB, Ecker DR, Stein OL (1964) US Patent 3,116,975Google Scholar
  44. 44.
    Brunner PH, Roberts PV (1980) Carbon 18:217CrossRefGoogle Scholar
  45. 45.
    Abbott WF (1962) US Patent 3,053,775Google Scholar
  46. 46.
    Bacon R (1973) In: Walke JPL, Thrower P (eds) Chemistry and physics of carbon, vol 9. Marcel Dekker, New YorkGoogle Scholar
  47. 47.
    Bacon R, Tang MM (1964) Carbon 2: 221, IN3–IN4, 3–5Google Scholar
  48. 48.
    Plaisantin H, Pailler R, Guette A, Birot M, Pillot JP, Daude G, Olry P (2006) J Mater Sci 41:1959. doi: 10.1007/s10853-006-1297-8 Google Scholar
  49. 49.
    Sevilla M, Fuertes AB (2009) Carbon 47:2281CrossRefGoogle Scholar
  50. 50.
    Shunjin P, Huili S, Xuechao H (2003) J Appl Polym Sci 90:1941CrossRefGoogle Scholar
  51. 51.
    Domvoglou D, Wortmann F, Taylor J, Ibbett R (2010) Cellulose 17: 757Google Scholar
  52. 52.
    Gentry SJ, Howarth SR (1984) Sensors Actuators 5:265CrossRefGoogle Scholar
  53. 53.
    Kilzer FJ, Broido A (1965) Pyrodynamics 2:151Google Scholar
  54. 54.
    Piskorz J, Radlein DSAG, Scott DS, Czernik S (1989) J Anal Appl Pyrol 16:127CrossRefGoogle Scholar
  55. 55.
    Trushnikov AM, Kazakov ME, Gridina YM, Vazheva LD, Borisova LK (1995) Russian Patent 2047674Google Scholar
  56. 56.
    Kazakov ME, Trushnikov AM, Yunitskaia ML (1995) Russian Patent 2045472Google Scholar
  57. 57.
    Lysenko AA, Piskunova IA, Astashkina OV (2003) Fibre Chem 35:189CrossRefGoogle Scholar
  58. 58.
    Kaverov AT, Kazakov ME, Varshavsky VY (1995) In: Kostikov VI (ed) Fibre science and technology. Chapman & Hall, LondonGoogle Scholar
  59. 59.
    Aksel S, Eder D (2010) J Mater Chem 20: 9149Google Scholar
  60. 60.
    Kawamoto H, Murayama M, Saka S (2003) J Wood Sci 49:469CrossRefGoogle Scholar
  61. 61.
    Lie JA, Hägg M-B (2006) J Membr Sci 284:79CrossRefGoogle Scholar
  62. 62.
    Wu Q, Pan N, Deng K, Pan D (2008) Carbohydr Polym 72:222CrossRefGoogle Scholar
  63. 63.
    Ali M, Apperley D, Eley C, Emsley A, Harris R (1996) Cellulose 3:77CrossRefGoogle Scholar
  64. 64.
    Wu Q-l, Gong J-h, Zhang Z-h, Pan D (2007) Carbon 45:1378CrossRefGoogle Scholar
  65. 65.
    Darmstadt H, Roy C, Kaliaguine S, Xu G, Auger M, Tuel A, Ramaswamy V (2000) Carbon 38:1279CrossRefGoogle Scholar
  66. 66.
    McNamara KM, Gleason KK (1992) J Appl Phys 71:2884CrossRefGoogle Scholar
  67. 67.
    Goze-Bac C, Latil S, Lauginie P, Jourdain V, Conard J, Duclaux L, Rubio A, Bernier P (2002) Carbon 40:1825CrossRefGoogle Scholar
  68. 68.
    Dobrovol’skaya IP, Mokeev MV, Sazanov YN, Gribanov AV, Sukhanova TE (2006) Russ J Appl Chem 79:1312CrossRefGoogle Scholar
  69. 69.
    Tang X-P, Kleinhammes A, Shimoda H, Fleming L, Bennoune KY, Sinha S, Bower C, Zhou O, Wu Y (2000) Science 288:492CrossRefGoogle Scholar
  70. 70.
    Goze-Bac C, Latil S, Vaccarini L, Bernier P, Gaveau P, Tahir S (2001) Phys Rev B 63:100302CrossRefGoogle Scholar
  71. 71.
    Imai H, Babu PK, Oldfield E, Wieckowski A, Kasuya D, Azami T, Shimakawa Y, Yudasaka M, Kubo Y, Iijima S (2006) Phys Rev B 73:125405CrossRefGoogle Scholar
  72. 72.
    Plaisantin H, Pailler R, Guette A, Daudé G, Pétraud M, Barbe B, Birot M, Pillot JP, Olry P (2001) Compos Sci Technol 61:2063CrossRefGoogle Scholar
  73. 73.
    Marrinan HJ, Mann J (1956) J Polym Sci 21:301CrossRefGoogle Scholar
  74. 74.
    Tsuboi M (1957) J Polym Sci 25:159CrossRefGoogle Scholar
  75. 75.
    Liang CY, Marchessault RH (1959) J Polym Sci 37:385CrossRefGoogle Scholar
  76. 76.
    Atalla RH, Vanderhart DL (1984) Science 223:283CrossRefGoogle Scholar
  77. 77.
    VanderHart DL, Atalla RH (1984) Macromolecules 17:1465CrossRefGoogle Scholar
  78. 78.
    Kondo T (1997) Cellulose 4:281CrossRefGoogle Scholar
  79. 79.
    Kondo T, Sawatari C (1996) Polymer 37:393CrossRefGoogle Scholar
  80. 80.
    Fengel D, Strobel C (1994) Acta Polym 45:319CrossRefGoogle Scholar
  81. 81.
    Hulleman SHD, van Hazendonk JM, van Dam JEG (1994) Carbohydr Res 261:163CrossRefGoogle Scholar
  82. 82.
    Pastorova I, Botto RE, Arisz PW, Boon JJ (1994) Carbohydr Res 262:27CrossRefGoogle Scholar
  83. 83.
    Low MJD, Morterra C (1985) Carbon 23:311CrossRefGoogle Scholar
  84. 84.
    Wiley JH, Atalia RH (1987) Carbohydr Res 160:113CrossRefGoogle Scholar
  85. 85.
    Dresselhaus MS, Eklund PC (2000) Adv Phys 49:705CrossRefGoogle Scholar
  86. 86.
    Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA (1988) In: Graphite fibers and filaments. Springer, BerlinCrossRefGoogle Scholar
  87. 87.
    Endo M, Kim VA, Nishimura K, Hayashi T, Matushita T (2001) In: Rand B, Appleyard SP, Yardim MF (eds) Nato series, 374, Academic Publishers, AmsterdamGoogle Scholar
  88. 88.
    Young RJ (1995) J Text Inst 86:360CrossRefGoogle Scholar
  89. 89.
    Treloar LRG (1960) Polymer 1:95CrossRefGoogle Scholar
  90. 90.
    Hamad WY, Eichhorn S (1997) J Eng Mater Technol 119:309CrossRefGoogle Scholar
  91. 91.
    Lourie O, Wagner HD (1998) J Mater Res 13:2418CrossRefGoogle Scholar
  92. 92.
    Cooper CA, Young RJ, Halsall M (2001) Compos Part A Appl Sci Manuf 32: 401Google Scholar
  93. 93.
    Hsieh Y-C, Yano H, Nogi M, Eichhorn SJ (2008) Cellulose 15:507CrossRefGoogle Scholar
  94. 94.
    Li N, Eichhorn S (2006) J Mater Sci 41:4993. doi: 10.1007/s10853-006-0138-0 CrossRefGoogle Scholar
  95. 95.
    Kroon-Batenburg LMJ, Kroon J, Northolt MG (1986) Polym Commun Guildford 27:290CrossRefGoogle Scholar
  96. 96.
    Northolt MG, De Vries H (1985) Die Angew Makromol Chem 133:183CrossRefGoogle Scholar
  97. 97.
    Northolt MG, van der Hout R (1985) Polymer 26:310CrossRefGoogle Scholar
  98. 98.
    Northolt MG, Boerstoel H, Maatman H, Huisman R, Veurink J, Elzerman H (2001) Polymer 42:8249CrossRefGoogle Scholar
  99. 99.
    Chari SS, Bahl OP, Mathur RB (1981) Fibre Sci Technol 15:153CrossRefGoogle Scholar
  100. 100.
    Kim D-Y, Nishiyama Y, Wada M, Kuga S (2001) Carbon 39:1051CrossRefGoogle Scholar
  101. 101.
    Sevilla M, Fuertes AB (2010) Chem Phys Lett 490: 63Google Scholar
  102. 102.
    Ruland W (1969) J Polym Sci Part C Polym Symp 28:143CrossRefGoogle Scholar
  103. 103.
    Peng S, Shao H, Hu X (2004) Int J Polym Mater 53:601CrossRefGoogle Scholar
  104. 104.
    Wu Q-L, Gu S-Y, Gong J-H, Pan D (2006) Synth Metals 156:792CrossRefGoogle Scholar
  105. 105.
    Fink HP, Weigel P, Purz HJ, Ganster J (2001) Prog Polym Sci 26:1473CrossRefGoogle Scholar
  106. 106.
    Venner JG (2000) In: Kirk-Othmer encyclopaedia of chemical technology, Wiley Inc., New YorkGoogle Scholar
  107. 107.
    Röder T, Moosbauer J, Kliba G, Schlader S, Zuckerstätter G (2009) Lenzinger Berichte 87:98Google Scholar
  108. 108.
    Sfiligoj Smole M, Persin Z, Kreze T, Stana Kleinschek K, Ribitsch V, Neumayer S (2003) Mater Res Innov 7:275CrossRefGoogle Scholar
  109. 109.
    Marhöfer RJ, Reiling S, Brickmann J (1996) Ber Bunsenges Physikalishe Chem 100:1350Google Scholar
  110. 110.
    Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 57:651CrossRefGoogle Scholar
  111. 111.
    Tashiro K, Kobayashi M (1985) Polym Bull (Berlin) 14:213Google Scholar
  112. 112.
    Guhados G, Wan W, Hutter JL (2005) Langmuir 21:6642CrossRefGoogle Scholar
  113. 113.
    Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Cellulose 5:187CrossRefGoogle Scholar
  114. 114.
    Yamanaka S (1989) J Mater Sci 24:3141. doi: 10.1007/BF01139032 CrossRefGoogle Scholar
  115. 115.
    Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) J Mater Sci 25:2997. doi: 10.1007/BF00584917 CrossRefGoogle Scholar
  116. 116.
    Gao Q, Shen X, Lu X (2011) Carbohydr Polym 83: 1253Google Scholar
  117. 117.
    Eichhorn S, Young RJ (2001) Cellulose 8:197CrossRefGoogle Scholar
  118. 118.
    Ardizzone S, Dioguardi FS, Mussini T, Mussini PR, Rondinini S, Vercelli B, Vertova A (1999) Cellulose 6:57CrossRefGoogle Scholar
  119. 119.
    Kennedy LJ, Vijaya JJ, Sekaran G (2005) Mater Chem Phys 91:471CrossRefGoogle Scholar
  120. 120.
    Fung AWP, Dresselhaus MS, Endo M (1993) Phys Rev B 48:14953CrossRefGoogle Scholar
  121. 121.
    Perepelkin KE (2002) Fibre Chem 34:271CrossRefGoogle Scholar
  122. 122.
    Lide DR (1994) In: CRC handbook of chemistry and physics, 75th edn. CRC Press, Boca Raton, p 12Google Scholar
  123. 123.
    Rhim Y-R, Zhang D, Fairbrother DH, Wepasnick KA, Livi KJ, Bodnar RJ, Nagle DC (2010) Carbon 48: 1012Google Scholar
  124. 124.
    Werbowyj RS, Gray DG (1976) Mol Crystals Liquid Cryst 34:97CrossRefGoogle Scholar
  125. 125.
    Loebner EE (1956) Phys Rev 102:46CrossRefGoogle Scholar
  126. 126.
    Carmona F, Delhaes P, Keryer G, Manceau JP (1974) Solid State Commun 14:1183CrossRefGoogle Scholar
  127. 127.
    Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Carbon 40:2913CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations