Journal of Materials Science

, Volume 47, Issue 6, pp 2573–2582 | Cite as

Investigating the vibration damping behavior of barium titanate (BaTiO3) ceramics for use as a high damping reinforcement in metal matrix composites

  • T. A. Asare
  • B. D. Poquette
  • J. P. Schultz
  • S. L. KampeEmail author


We have examined factors that affect the vibration damping behavior of the ferroelectric ceramic barium titanate (BaTiO3) by measuring its low frequency (0.1–10 Hz) damping loss coefficient (tan δ) using dynamic mechanical analysis. In monolithic BaTiO3, tan δ was found to increase with temperature up its Curie temperature (T C), beyond which the damping capability exhibited a sharp drop. The abrupt drop as temperatures increase beyond T C has been attributed to the disappearance of ferroelastic domains as the crystallographic structure of BaTiO3 transforms from tetragonal to cubic. At temperatures below T C, the damping coefficient is further shown to increase with decreasing frequency of the imposed vibration, and in microstructures with a high degree of tetragonality and large domain densities. Data further indicate that tan δ values tend to decrease with the number of cycles that are imposed; however, initial values can be restored if the material is allowed to age following loading.


BaTiO3 Shape Memory Alloy Dynamic Mechanical Analysis Barium Titanate Ferroelectric Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the support of this study by the Army Research Office under Grant No. DAAD19-01-1-0714, Dr. William Mullins, ARO Contract Manager; and the Material Science and Engineering Department at Virginia Tech. The authors also gratefully acknowledge the comments and clarifications provided by Dr. Yongmei Jin, Assistant Professor of MSE at Michigan Tech.


  1. 1.
    Schaller R (2001) Mater Sci Forum 366–368:621CrossRefGoogle Scholar
  2. 2.
    Millet P, Schaller R, Benoit W (1985) J Phys (Paris) 46:405CrossRefGoogle Scholar
  3. 3.
    Lavernia EJ, Perez RJ, Zhang J (1995) Metall Mater Trans A 26:2803CrossRefGoogle Scholar
  4. 4.
    Schaller R (2003) J Alloy Compd 355:131CrossRefGoogle Scholar
  5. 5.
    Wolfenden A, Wolla JM (1989) J Mater Sci 24:3205. doi: 10.1007/BF01139042 CrossRefGoogle Scholar
  6. 6.
    Christodoulou L, Venables JD (2003) JOM 55(12):39CrossRefGoogle Scholar
  7. 7.
    Poquette BD, Asare TA, Schultz JP, Brown DW, Kampe SL (2011) Metall Mater Trans A 42A:2833CrossRefGoogle Scholar
  8. 8.
    Pojprapai (Imlao) S, Jones JL, Studer AJ, Russell J, Valanoor N, Hoffman M (2008) Acta Mater 56:1577CrossRefGoogle Scholar
  9. 9.
    Hori M, Aoki T, Ohira Y, Yano S (2001) Composites 32:287Google Scholar
  10. 10.
    Forrester JS, Kisi EH, Studer AJ (2005) J Eur Ceram Soc 25:447CrossRefGoogle Scholar
  11. 11.
    Cheng S-Y, Ho N-J, Lu H-Y (2008) J Am Ceram Soc 91:3721CrossRefGoogle Scholar
  12. 12.
    Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, p 83Google Scholar
  13. 13.
    Moulson AJ, Herbert JM (2003) Electroceramics materials properties applications, 2nd edn. Wiley, New YorkGoogle Scholar
  14. 14.
    Lee T, Aksay IA (2001) Cryst Growth Des 1(5):401CrossRefGoogle Scholar
  15. 15.
    Suo Z (1998) Curr Opin Solid State Mater Sci 3(5):486CrossRefGoogle Scholar
  16. 16.
    Lu SW, Lee BI, Wang ZL, Samuels WD (2000) J Cryst Growth 219:269CrossRefGoogle Scholar
  17. 17.
    Shih WY, Shih WH, Aksay IA (1994) Phys Rev 50(21):15575CrossRefGoogle Scholar
  18. 18.
    Bradt RC, Ansell GS (1969) J Am Ceram Soc 52(4):192CrossRefGoogle Scholar
  19. 19.
    Cheng BL, Gabbay M, Fantozzi G (1996) J Mater Sci 31(15):4141. doi: 10.1007/BF00352680 CrossRefGoogle Scholar
  20. 20.
    Ma Y, Kisi EH (2001) J Am Ceram Soc 84(2):399CrossRefGoogle Scholar
  21. 21.
    Otsuka K, Kakeshita T (1993) MRS Bull 27:91CrossRefGoogle Scholar
  22. 22.
    Hathaway KB, Clark AE (1993) MRS Bull 18:34Google Scholar
  23. 23.
    Van Humbeeck J (2003) J Alloys Compd 355:58CrossRefGoogle Scholar
  24. 24.
    Teter JP, Hathaway KB, Clark AE (1996) J Appl Phys 79:6213CrossRefGoogle Scholar
  25. 25.
    Barrado M, Lopez GA, No ML, San Juan J (2009) Mater Sci Eng A 521–522:363Google Scholar
  26. 26.
    Wei ZG, Sandstrom R, Miyazaki S (1998) J Mater Sci 33:3763. doi: 10.1023/A:1004674630156 CrossRefGoogle Scholar
  27. 27.
    Or SW, Nersessian N, Carman GP (2004) IEEE Trans Magn 40:71CrossRefGoogle Scholar
  28. 28.
    Zhang W, Kim JM, Koratkar N (2003) Smart Mater Struct 12:642CrossRefGoogle Scholar
  29. 29.
    Hathaway KB, Clark AE, Teter JP (1995) Metall Mater Trans A 26:2797CrossRefGoogle Scholar
  30. 30.
    Weng W, Wang H, Naiheng M, Yi W, Li J (2010) Mater Des 31:4116CrossRefGoogle Scholar
  31. 31.
    Aldraihem OJ, Baz A, Al-Saud TS (2007) Mech Adv Mater Struct 14:413CrossRefGoogle Scholar
  32. 32.
    Goff AC, Aning AO, Kampe SL (2004) TMS Lett 1(3):59Google Scholar
  33. 33.
    Kampe SL, Aning AO, Schultz JP, Asare TA, Poquette BD (2004) In: Proceedings of the 11th international conference on composites/nano engineering (ICCE-11), Hilton Head, SC, 8–14 August 2004, ICCE, p 657Google Scholar
  34. 34.
    Asmatulu R, Claus RO, Mecham JB, Inman DJ (2005) J Intell Mater Syst Struct 16:463CrossRefGoogle Scholar
  35. 35.
    Guruswamy S, Loveless MR, Srisukhumbowornchai N, McCarter MK, Teter JP (2000) IEEE Trans Magn 36:3219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • T. A. Asare
    • 1
  • B. D. Poquette
    • 2
  • J. P. Schultz
    • 3
  • S. L. Kampe
    • 4
    Email author
  1. 1.Special Metals CorporationNew HartfordUSA
  2. 2.GE HealthcareMilwaukeeUSA
  3. 3.Aeroprobe CorporationBlacksburgUSA
  4. 4.Department of Materials Science & EngineeringMichigan TechHoughtonUSA

Personalised recommendations