Journal of Materials Science

, Volume 47, Issue 5, pp 2384–2389 | Cite as

Far infrared study of local impurity modes of Boron-doped PbTe

  • P. M. NikolicEmail author
  • K. M. Paraskevopoulos
  • G. Zachariadis
  • O. Valasiadis
  • T. T. Zorba
  • S. S. Vujatovic
  • N. Nikolic
  • O. S. Aleksic
  • T. Ivetic
  • O. Cvetkovic
  • V. Blagojevic
  • M. V. Nikolic


PbTe single crystals, doped with B, were grown using the Bridgman method. Far infrared spectra were measured in the temperature range between 10 K and room temperature. The experimental spectra were numerically analyzed, and optical parameters were calculated. Local impurity modes of boron were observed at about 150 and 240 cm−1. For all samples, after FIR measurements, the content of boron was measured using inductively coupled plasma atomic emission spectrometry. Optical mobility of free carriers was calculated and it was the highest for the sample with only 0.014 at.% of boron in PbTe. A negative photoconductivity effect at 130 K for PbTe + B was also observed.


Boron Inductively Couple Plasma Atomic Emission Spectrometry PbTe Boron Atom Lead Telluride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was performed within project III45014 financed by the Ministry of Science and Education of the Republic of Serbia.


  1. 1.
    Nikolic PM (1965) Br J Appl Phys 16:1075CrossRefGoogle Scholar
  2. 2.
    Nikolic PM (1967) Br J Appl Phys 18:897CrossRefGoogle Scholar
  3. 3.
    Strauss AJ (1968) Trans Metall Soc AIME 242:354Google Scholar
  4. 4.
    Esaki L (1966) J Phys Soc Jpn 21:589Google Scholar
  5. 5.
    Dixon JR, Bis RF (1968) Phys Rev 176:942CrossRefGoogle Scholar
  6. 6.
    Akimov BA, Brandt N, Riabova LI, Khokhlov DR (2003) Perspekt Mater 4:5Google Scholar
  7. 7.
    Dashevsky Z, Shusterman S, Dariel MP, Drabkin I (2002) J Appl Phys 92:1425CrossRefGoogle Scholar
  8. 8.
    Singh DJ (2010) Phys Rev B 81:195217CrossRefGoogle Scholar
  9. 9.
    Svane A, Christensen NE, Cardona M, Chantis AN, van Schilfgaarde M, Kotani T (2010) Phys Rev B 81:245120CrossRefGoogle Scholar
  10. 10.
    Hoang K, Mahanti SD, Kanatzidis MG (2010) Phys Rev B 81:115106CrossRefGoogle Scholar
  11. 11.
    Rosenberg AJ, Grierson R, Woolley JC, Nikolić PM (1964) Trans Metall Soc AIME 230:342Google Scholar
  12. 12.
    Weiser K (1981) Phys Rev B 23:2741CrossRefGoogle Scholar
  13. 13.
    Xiong K, Lee G, Gupta RP, Wang W, Gnade BE, Cho K (2010) J Phys D Appl Phys 43:405403CrossRefGoogle Scholar
  14. 14.
    Averkin AA, Kaidanov VI, Mel’nik RB (1971) Sov Phys Semicond 5:75Google Scholar
  15. 15.
    Andreev VYu, Geimann KI, Matveenko AV, Mozhaeev EA, Moizhes BYa (1976) Sov Phys Semicond 9:1235Google Scholar
  16. 16.
    Weiser K, Klein A, Ainhorn M (1979) Appl Phys Lett 34:607CrossRefGoogle Scholar
  17. 17.
    Onopko DE, Ryskin AI (2001) Semiconductors 35:1223CrossRefGoogle Scholar
  18. 18.
    Ahmad S, Hoang K, Mahanti SD (2006) Phys Rev Lett 96:056403CrossRefGoogle Scholar
  19. 19.
    Ahmad S, Mahanti SD, Hoang K, Kanatzidis MG (2006) Phys Rev B 74:155205CrossRefGoogle Scholar
  20. 20.
    Mahanti SD, Hoang K, Ahmad S (2007) Physica B 401:291CrossRefGoogle Scholar
  21. 21.
    Hoang K, Mahanti SD, Jena P (2007) Phys Rev B 76:115432CrossRefGoogle Scholar
  22. 22.
    Imai Y, Shinohora Y, Isoda H (2001) In: Proceedings of functionally gradient materials, FGM Beijing, China, p 19Google Scholar
  23. 23.
    Veis AN, Yafaev RR (1984) Sov Phys Semicond 18:295Google Scholar
  24. 24.
    Nikolić PM, Romčević N, Radulović K, Vujatović SS, Djurić S, Blagojević V, Mihajlović P, Siapkas D, Zorba TT (1999) Sci Sintering 31:125Google Scholar
  25. 25.
    Nikolić PM, Paraskevopoulos KM, Zorba TT, Pavlidou E, Kantiranis N, Vujatović SS, Aleksić OS, Nikolić MV, Ivetić T, Savić S, Labus N, Blagojević V (2007) Sci Sintering 39:223CrossRefGoogle Scholar
  26. 26.
    Petrenko TL, Plyatsko SV (2010) Opto Electron Rev 18:310CrossRefGoogle Scholar
  27. 27.
    Parker D, Singh DJ (2010) Phys Rev B 82:035204CrossRefGoogle Scholar
  28. 28.
    Kanatzidis MG (2010) Chem Mater 22:648CrossRefGoogle Scholar
  29. 29.
    Akimov BA, Nikorich AV, Ryabova LI, Shirokova NA (1989) Fiz Tekh Poluprovodn 23:1019Google Scholar
  30. 30.
    Nemov SA, YuI Ravic (1998) Phys Uspekhy 41:735CrossRefGoogle Scholar
  31. 31.
    Dzero M, Schmalian J (2005) Phys Rev Lett 94:157003CrossRefGoogle Scholar
  32. 32.
    Volkov BA, Tugushev VV (1987) JETP Lett 46:245Google Scholar
  33. 33.
    Nikolic PM, Paraskevopoulos KM, Pavlidou E, Zorba TT, Ivetic T, Vujatovic SS, Aleksic OS, Nikolic N, Cvetkovic O, Blagojevic V, Nikolic MV (2011) Mater Chem Phys 125:72CrossRefGoogle Scholar
  34. 34.
    Hoang K, Mahanti SD (2008) Phys Rev B 78:085111CrossRefGoogle Scholar
  35. 35.
    Hoang K, Mahanti SD 2010–2011 (private communications)Google Scholar
  36. 36.
    Moss TS, Hawkins TD, Burell GJ (1968) J Phys C 1:1435CrossRefGoogle Scholar
  37. 37.
    Nakayama K, Sato T, Takahashi T, Murakami H (2008) Phys Rev Lett 100:227004CrossRefGoogle Scholar
  38. 38.
    Romcevic N, Trajic J, Kuznetsova TA, Romcevic M, Hadjic D, Khokhlov DR (2007) J Alloys Compnd 442:324CrossRefGoogle Scholar
  39. 39.
    Romcevic N, Stojanovic D, Romcevic M, Khokhlov DR (2008) J Alloys Compnd 460:13CrossRefGoogle Scholar
  40. 40.
    Lukovic D, Konig W, Blagojevic V, Jaksic O, Nikolic PM (2006) Mater Res Bull 41:367CrossRefGoogle Scholar
  41. 41.
    Nikolic PM, Paraskevopoulos KM, Vujatovic SS, Nikolic MV, Bojcic A, Zorba TT, Stamenovic B, Blagojevic V, Jovic M, Dasic M, Konig W (2008) Mater Chem Phys 112:496CrossRefGoogle Scholar
  42. 42.
    Nikolic MV, Paraskevopoulos KM, Ivetic T, Zorba TT, Vujatovic SS, Pavlidou E, Blagojevic V, Bojicic A, Aleksic OS, Nikolic N, Konig W, Nikolic PM (2010) J Mater Sci 45:5910. doi: 10.1007/s10853-010-4670-6 CrossRefGoogle Scholar
  43. 43.
    Tetyorkin V, Movchan S (2000) Semicond Phys Quantum Electron Optoelectron 3:300Google Scholar
  44. 44.
    Parada NJ, Pratt GW Jr (1969) Phys Rev Lett 22:180CrossRefGoogle Scholar
  45. 45.
    Radulović K, Nikolić PM, Romčević N, Vujatović SS, Vasiljević-Radović D, Mihajlović P, Djurić S, Kühl J, König W (2000) In: Proceeding of the XLIV ETRAN Conference 151Google Scholar
  46. 46.
    Radulović KT, Nikolić PM, Vasiljević-Radović D, Vujatović SS, Romčević M, Romčević N, Kuhl J, Vogt H (2001) Bal Phys Lett 9:179Google Scholar
  47. 47.
    Nikolić PM, Romčević N, Radulović K, Romčević M, Vujatović SS, Djurić S, Blagojević V, König W, Siapkas D, Zorba TT (2003) Bulletin T CXXVI de l’Académie Serbe des Scienc. et des Arts, Classe des Sciences techniques 29 9Google Scholar
  48. 48.
    Heremans JP, Jovovic V, Toberer ES, Saramat A, Korosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ (2008) Science 32:554CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • P. M. Nikolic
    • 1
    Email author
  • K. M. Paraskevopoulos
    • 2
  • G. Zachariadis
    • 3
  • O. Valasiadis
    • 2
  • T. T. Zorba
    • 2
  • S. S. Vujatovic
    • 1
  • N. Nikolic
    • 4
  • O. S. Aleksic
    • 4
  • T. Ivetic
    • 1
  • O. Cvetkovic
    • 5
  • V. Blagojevic
    • 6
  • M. V. Nikolic
    • 4
  1. 1.Institute of Technical Sciences of the Serbian Academy of Sciences and ArtsBelgradeSerbia
  2. 2.Physics Department, Solid State SectionAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece
  4. 4.Institute for Multidisciplinary ResearchBelgradeSerbia
  5. 5.ICTM, Center of ChemistryBelgradeSerbia
  6. 6.Faculty of Electrical EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations