Journal of Materials Science

, Volume 47, Issue 5, pp 2333–2338 | Cite as

Phase transitions and hard magnetic properties for rapidly solidified MnAl alloys doped with C, B, and rare earth elements

  • Z. W. Liu
  • C. Chen
  • Z. G. Zheng
  • B. H. Tan
  • R. V. Ramanujan
Article

Abstract

MnAl alloys are attractive candidates to potentially replace rare earth hard magnets because of their superior mechanical strength, reasonable magnetic properties, and low cost. In this study, the phase transitions and magnetic properties of melt spun Mn55Al45 based alloys doped with C, B, and rare earth (RE) elements were investigated. As-spun Mn–Al, Mn–Al–C, and Mn–Al–C–RE ribbons possessed a hexagonal ε crystal structure. Phase transformations between the ε and the L10 (τ) phase are of interest. The ε → τ transformation occurred at ~500 °C and the reversed τ → ε transformation was observed at ~800 °C. Moderate carbon addition promoted the formation of the desired hard magnetic L10 τ-phase and improved the hard magnetic properties. The Curie temperature TC of the τ phase is very sensitive to the C concentration. Dy or Pr doping in MnAlC alloy had no significant effect on TC. Pr addition can slightly improve the magnetic properties of MnAlC alloy, especially JS. Doping B could not enhance the magnetic properties of MnAl alloy since B is not able to stabilize either the ε phase or the L10 hard magnetic τ phase.

References

  1. 1.
    Kamino K, Kawaguchi T, Nagakura M (1966) IEEE Trans Magn 2:506CrossRefGoogle Scholar
  2. 2.
    Yanar C, Wiezorek JMK, Radmilovic V, Soffa WA WA (2002) Metall Mater Trans A 33:2413CrossRefGoogle Scholar
  3. 3.
    Loch AJJ, Hokkeling P, Sterg MGVD, DeVos KJ (1960) J Appl Phys 31:75SCrossRefGoogle Scholar
  4. 4.
    Sakka Y, Nakamura M, Hoshimoto K (1989) J Mater Sci 24:4331. doi:10.1007/BF00544507 CrossRefGoogle Scholar
  5. 5.
    Wyslocki JJ, Pawlik P, Przybyl A (1999) Mater Chem Phys 60:211CrossRefGoogle Scholar
  6. 6.
    Yang YC, Ho WW, Lin C, Yang JL, Zhou HM, Zhu JX, Zeng XX, Zhang BS, Jin L (1984) J Appl Phys 55:2053CrossRefGoogle Scholar
  7. 7.
    Fazakas E, Varga LK, Mazaleyrat F (2007) J Alloys Comp 434–435:611CrossRefGoogle Scholar
  8. 8.
    Kono H (1958) J Phys Soc Japan 13:1444CrossRefGoogle Scholar
  9. 9.
    Ohtani T, Kato N, Kojima K, Sakamoto Y, Konno I, Tsukahara M, Kubo T (1977) IEEE Trans Magn 13:1328CrossRefGoogle Scholar
  10. 10.
    Zeng Q, Baker I, Cui JB, Yan ZC (2007) J Magn Magn Mater 308:214CrossRefGoogle Scholar
  11. 11.
    Yamaguchi A, Tanaka Y, Yanagimoto K, Sakaguchi I, Kato N (1989) Bull Jpn Inst Met 28:422CrossRefGoogle Scholar
  12. 12.
    Pareti L, Bolzoni F, Leccabue F, Ermakov AE (1986) J Appl Phys 59:3824CrossRefGoogle Scholar
  13. 13.
    Yan ZC, Huang Y, Zhang Y, Hadjipanayis GC, Soffa W, Weller D (2005) Scripta Mater 53:463CrossRefGoogle Scholar
  14. 14.
    Zeng Q, Baker I, Yan ZC (2006) J Appl Phys 99:08E902CrossRefGoogle Scholar
  15. 15.
    Bohlmann MA, Koo JC, Wise JH (1981) J Appl Phys 52:2542CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Z. W. Liu
    • 1
  • C. Chen
    • 1
  • Z. G. Zheng
    • 1
  • B. H. Tan
    • 2
  • R. V. Ramanujan
    • 2
  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations