Journal of Materials Science

, Volume 47, Issue 5, pp 2175–2181 | Cite as

Measuring adhesion forces between model polysaccharide films and PLA bead to mimic molecular interactions in flax/PLA biocomposite

  • Gijo Raj
  • Eric Balnois
  • Marie-Aline Helias
  • Christophe Baley
  • Yves Grohens
Article

Abstract

Natural fiber-reinforced polymers or biocomposites are becoming increasingly popular as an environment friendly alternative to traditional glass fiber-reinforced thermoplastics. The mechanical properties of reinforced biocomposites, such as flax/polylactic acid (PLA), are largely governed by the level of interfacial interactions between the two constituents apart from their intrinsic properties. The hierarchical organization of various polysaccharides present in natural fibers results in complex mechanisms at the interface which are still poorly understood and difficult to analyze through a traditional approach that rely on indirect assessments. The possibility of measuring direct adhesion force between individual particles using the colloidal force microscopy has been exploited here by developing an experimental set-up in which a micrometer colloidal PLA bead is brought into close contact with molecularly smooth polysaccharide surfaces that mimic the main constituents of flax fibers, cellulose, hemicellulose, and pectins. Adhesion force measurements performed under ambient and low relative humidity conditions indicate that cellulose/PLA is the weakest interface in the biocomposite. Moreover, the results emphasize the important role of water molecules for the more hydrophilic polymers in flax fibers that takes place in the fundamental forces involved in the adhesion phenomena at the biocomposite interface.

References

  1. 1.
    Bodros E, Pillin I, Montrelay N, Baley C (2007) Compos Sci Technol 67:462. doi: 10.1016/j.compscitech.2006.08.024 CrossRefGoogle Scholar
  2. 2.
    Oksman K, Skrifvars M, Selin J-F (2003) Compo Sci Technol 63:1317. doi: 10.1016/s0266-3538(03)00103-9 CrossRefGoogle Scholar
  3. 3.
    Sedan D, Pagnoux C, Smith A, Chotard T (2008) J Eur Ceram Soc 28:183. doi: 10.1016/j.jeurceramsoc.2007.05.019 CrossRefGoogle Scholar
  4. 4.
    Le Duigou A, Davies P, Baley C (2011) J Biobased Mater Bioenergy 5:153. doi: 10.1166/jbmb.2011.1116 CrossRefGoogle Scholar
  5. 5.
    Arbelaiz A, Cantero G, Fernández B, Mondragon I, Gañán P, Kenny JM (2005) Polym Compos 26:324. doi: 10.1002/pc.20097 CrossRefGoogle Scholar
  6. 6.
    Kalia S, Kaith BS, Kaur I (2009) Polym Eng Sci 49:1253. doi: 10.1002/pen.21328 CrossRefGoogle Scholar
  7. 7.
    Mohanty AK, Misra M, Drzal LT (2001) Compos Interface 8:313. doi: 10.1163/156855401753255422 CrossRefGoogle Scholar
  8. 8.
    Mwaikambo LY, Ansell MP (2002) J Appl Polym Sci 84:2222. doi: 10.1002/app.10460 CrossRefGoogle Scholar
  9. 9.
    Balnois E, Bunel F, Baley C, Grohens Y (2007) Compos Interface 14:715. doi: 10.1163/156855407782106537 CrossRefGoogle Scholar
  10. 10.
    Raj G, Balnois E, Baley C, Grohens Y (2011) Int J Polym Sci 2011:1. doi: 10.1155/2011/503940 CrossRefGoogle Scholar
  11. 11.
    Baley C (2002) Composites A 33:939. doi: 10.1016/s1359-835x(02)00040-4 CrossRefGoogle Scholar
  12. 12.
    Morvan C, Andème-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Akin DE (2003) Plant Physiol Biochem 41:935. doi: 10.1016/j.plaphy.2003.07.001 CrossRefGoogle Scholar
  13. 13.
    Pietak A, Korte S, Tan E, Downard A, Staiger MP (2007) Appl Surf Sci 253:3627. doi: 10.1016/j.apsusc.2006.07.082 CrossRefGoogle Scholar
  14. 14.
    Le Troëdec M, Rachini A, Peyratout C, Rossignol S, Max E, Kaftan O, Fery A, Smith A (2011) J Colloid Interface Sci 356:303. doi: 10.1016/j.jcis.2010.12.066 CrossRefGoogle Scholar
  15. 15.
    Raj G, Balnois E, Baley C, Grohens Y (2009) J Scanning Probe Microsc 4:66. doi: 10.1166/jspm.2009.1010 CrossRefGoogle Scholar
  16. 16.
    Raj G, Balnois E, Baley C, Grohens Y (2009) Colloid Surf A 352:47. doi: 10.1016/j.colsurfa.2009.09.048 CrossRefGoogle Scholar
  17. 17.
    Sczech R, Riegler H (2006) J Colloid Interface Sci 301:376. doi: 10.1016/j.jcis.2006.05.021 CrossRefGoogle Scholar
  18. 18.
    Israelachvili JN (1991) Intermolecular and surface forces. Academic Press, LondonGoogle Scholar
  19. 19.
    Butt H-J, Cappella B, Kappl M (2005) Surf Sci Rep 59:1. doi: 10.1016/j.surfrep.2005.08.003 CrossRefGoogle Scholar
  20. 20.
    Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) J Colloid Interface Sci 232:17. doi: 10.1006/jcis.2000.7168 CrossRefGoogle Scholar
  21. 21.
    Cappella B, Dietler G (1999) Surf Sci Rep 34:1. doi: 10.1016/s0167-5729(99)00003-5 CrossRefGoogle Scholar
  22. 22.
    Johnson KL, Kendall K, Roberts AD (1971) Proc R Soc Lond A Math Phys Sci 324:301. doi: 10.1098/rspa.1971.0141 CrossRefGoogle Scholar
  23. 23.
    Burnham NA, Colton RJ, Pollock HM (1993) Nanotechnology 4:64. doi: 10.1088/0957-4484/4/2/002 CrossRefGoogle Scholar
  24. 24.
    Sedin DL, Rowlen KL (2000) Anal Chem 72:2183. doi: 10.1021/ac991198c CrossRefGoogle Scholar
  25. 25.
    Xiao X, Qian L (2000) Langmuir 16:8153. doi: 10.1021/la000770o CrossRefGoogle Scholar
  26. 26.
    Eastman T, Zhu D-M (1996) Langmuir 12:2859. doi: 10.1021/la9504220 CrossRefGoogle Scholar
  27. 27.
    Ko J-A, Choi H-J, Ha M-Y, Hong S-D, Yoon H-S (2010) Langmuir 26:9728. doi: 10.1021/la100452m CrossRefGoogle Scholar
  28. 28.
    Baley C, Morvan C, Grohens Y (2005) Macromol Symp 222:195. doi: 10.1002/masy.200550425 CrossRefGoogle Scholar
  29. 29.
    Trotzig C, Abrahmsén-Alami S, Maurer FHJ (2007) Polymer 48:3294. doi: 10.1016/j.polymer.2007.03.047 CrossRefGoogle Scholar
  30. 30.
    Turner DT, Schwartz A (1985) Polymer 26:757. doi: 10.1016/0032-3861(85)90114-4 CrossRefGoogle Scholar
  31. 31.
    Iijima M, Nakamura K, Hatakeyama T, Hatakeyama H (2000) Carbohydr Polym 41:101. doi: 10.1016/s0144-8617(99)00116-2 CrossRefGoogle Scholar
  32. 32.
    Lourdin D, Coignard L, Bizot H, Colonna P (1997) Polymer 38:5401. doi: 10.1016/S0032-3861(97)00082-7 CrossRefGoogle Scholar
  33. 33.
    Boiko YM, Prud’homme RE (1997) Macromolecules 30:3708. doi: 10.1021/ma960002x CrossRefGoogle Scholar
  34. 34.
    Boiko YM, Prud’homme RE (1999) J Appl Polym Sci 74:825. doi: 10.1002/(sici)1097-4628(19991024)74:4<825:aid-app8>3.0.co;2-6 CrossRefGoogle Scholar
  35. 35.
    Grohens Y, Brogly M, Labbe C, David M-O, Schultz J (1998) Langmuir 14:2929. doi: 10.1021/la971397w CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gijo Raj
    • 1
  • Eric Balnois
    • 1
  • Marie-Aline Helias
    • 1
  • Christophe Baley
    • 1
  • Yves Grohens
    • 1
  1. 1.LIMATB (Laboratoire D’Ingénierie des MATériaux de Bretagne), Centre de rechercheUniversité de Bretagne Sud (UBS-Ueb)Lorient CedexFrance

Personalised recommendations