Journal of Materials Science

, Volume 47, Issue 4, pp 1669–1676 | Cite as

Synthesis and characterization of CuInS2 thin film structures

  • Angela S. Wochnik
  • Christoph HeinzlEmail author
  • Florian Auras
  • Thomas Bein
  • Christina Scheu


CuInS2 is a promising semiconductor material for solar cell applications. Here we use a mild solvothermal synthesis route to prepare CuInS2 films with different thicknesses and morphologies on fluorine-doped tin oxide coated glass. The microstructure of the films is studied in detail by scanning electron microscopy and transmission electron microscopy (TEM) and associated analytical techniques. For further characterization, we apply X-ray diffraction and UV/Vis absorption spectroscopy. Two different films are synthesized using different reagent stoichiometries and thermal treatments. The thicker film (25 μm) consists of three different regions. Close to the substrate a 600 nm thick densely packed layer occurs, on which a 1 μm thick flaky structure is found. On top of this structure, microspheres are located which possess a size of about 3 μm and are composed of numerous flakes. The thinner film consists of a 200 nm thick densely packed layer and a net-like structure built of individual flakes as well. In both films, TEM reveals that the flakes are adjacent to 10 nm thin branch-like rods. Energy dispersive X-ray spectroscopy of the densely packed layers indicates a Cu-rich composition which suggests them to be a p-type semiconductor. The rods and the flakes show a stoichiometric composition. Due to its high surface area, the thinner film offers a promising morphology for solar cell applications based on the large available area for the separation of electron–hole pairs, when the material is combined with a suitable electron conductor.


Inductively Couple Plasma Atomic Emission Spectrometry Copper Sulfide Packed Layer Transmission Electron Microscopy Investigation Solar Cell Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the cluster of excellence Nanosystems Initiative Munich (NIM) and from LMUexcellent is gratefully acknowledged. Technical support from Steffen Schmidt is gratefully acknowledged.


  1. 1.
    Tell B, Shay JL, Kasper HM (1971) Phys Rev B 4:2463CrossRefGoogle Scholar
  2. 2.
    Yukawa T, Kuwabara K, Koumoto K (1996) Thin Solid Films 286:151CrossRefGoogle Scholar
  3. 3.
    Hollingsworth JA, Banger KK, Jin MHC et al (2003) Thin Solid Films 431–432:63CrossRefGoogle Scholar
  4. 4.
    Zouaghi MC, Nasrallah TB, Marsillac S, Bernède JC, Belgacem S (2001) Thin Solid Films 382:39CrossRefGoogle Scholar
  5. 5.
    Muffler HJ, Fischer CH, Diesner K, Lux-Steiner MC (2001) Sol Energy Mater Sol Cells 67:121CrossRefGoogle Scholar
  6. 6.
    Kuranouchi S, Nakazawa T (1998) Sol Energy Mater Sol Cells 50:31CrossRefGoogle Scholar
  7. 7.
    Scheer R, Luck I, Kanis M, Matsui M, Watanabe T, Yamamoto T (2001) Thin Solid Films 392:1CrossRefGoogle Scholar
  8. 8.
    Möller J, Fischer CH, Muffler HJ et al (2000) Thin Solid Films 361–362:113CrossRefGoogle Scholar
  9. 9.
    Pathan HM, Lokhande CD (2004) Appl Surf Sci 239:11Google Scholar
  10. 10.
    Guha P, Das D, Maity AB, Ganguli D, Chaudhuri S (2003) Sol Energy Mater Sol Cells 80:115CrossRefGoogle Scholar
  11. 11.
    Shi Y, Jin Z, Li C, An H, Qiu J (2006) Appl Surf Sci 252:3737CrossRefGoogle Scholar
  12. 12.
    Peng S, Cheng F, Liang J, Tao Z, Chen J (2009) J Alloys Compd 481:786CrossRefGoogle Scholar
  13. 13.
    Han S, Kong M, Guo Y, Wang M (2009) Mater Lett 63:1192CrossRefGoogle Scholar
  14. 14.
    Xiao J, Xie Y, Tang R, Qian Y (2001) J Solid State Chem 161:179CrossRefGoogle Scholar
  15. 15.
    Shen G, Chen D, Tang K, Fang Z, Sheng J, Qian Y (2003) J Cryst Growth 254:75CrossRefGoogle Scholar
  16. 16.
    Feng J, Han J, Zhao X (2009) Prog Org Coat 64:268CrossRefGoogle Scholar
  17. 17.
    Qi Y, Tang K, Zeng S, Zhou W (2008) Microporous Mesoporous Mater 114:395CrossRefGoogle Scholar
  18. 18.
    Strecker A, Salzberger U, Mayer J (1993) Prakt. Metallogr. 30:482Google Scholar
  19. 19.
    Dejene F (2011) J Mater Sci 46:6981. doi: 10.1007/s10853-011-5666-6 CrossRefGoogle Scholar
  20. 20.
    Das K, Panda SK, Gorai S, Mishra P, Chaudhuri S (2008) Mater Res Bull 43:2742CrossRefGoogle Scholar
  21. 21.
    Wen C, Weidong X, Juanjuan W, Xiaoming W, Jiasong Z, Lijun L (2009) Mater Lett 63:2495CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Angela S. Wochnik
    • 1
  • Christoph Heinzl
    • 1
    Email author
  • Florian Auras
    • 1
  • Thomas Bein
    • 1
  • Christina Scheu
    • 1
  1. 1.Department of ChemistryLudwig-Maximilians-University MunichMunichGermany

Personalised recommendations