Journal of Materials Science

, Volume 47, Issue 4, pp 1825–1835 | Cite as

Nano structures through self-assembly of protected hydrophobic amino acids: encapsulation of rhodamine B dye by proline-based nanovesicles

  • Sudeshna Kar
  • Michael G. B. Drew
  • Animesh Pramanik


The development of novel molecules for the creation of nanometer structures with specific properties has been the current interest of this research. We have developed a set of molecules from hydrophobic ω- and α-amino acids by protecting the –NH2 with Boc (t-butyloxycarbonyl) group and –CO2H with para-nitroanilide such as BocHN–Xx–CONH–(p–NO2)·C6H4, where Xx is γ-aminobutyric acid (γ-Abu), (l)-isoleucine, α-aminoisobutyric acid, proline, etc. These molecules generate various nanometer structures, such as nanofibrils, nanotubes and nanovesicles, in methanol/water through the self-assembly of bilayers in which the nitro benzene moieties are stacked in the middle and the Boc-protected amino acids parts are packed in the outer surface. The bilayers can be further stacked one over the other through hydrophobic interactions to form multilayer structure, which helps to generate different kinds of nanoscopic structures. The formation of the nanostructures has been facilitated through the participation of various noncovalent interactions, such as hydrophobic interactions, hydrogen bonding and aromatic π-stacking interactions. Fluorescence microscopy and UV studies reveal that the nanovesicles generated from pro-based molecule can encapsulate dye molecules which can be released by addition of acid (at pH 2). These single amino acid based molecules are both easy to synthesize and cost-effective and therefore offer novel scaffolds for the future design of nanoscale structures.


Dynamic Light Scattering Transmission Electron Microscopic Study Noncovalent Interaction Petroleum Ether Mixture Nanoscopic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



S. Kar would like to thank CSIR, New Delhi, India for a senior research fellowship (SRF). The financial assistance of UGC, New Delhi is acknowledged (Major Research Project, No.32-190/2006[SR]). We acknowledge the financial assistance of Centre for Research in Nanoscience & Nanotechnology (CRNN), University of Calcutta. We thank EPSRC and the University of Reading, UK for funds for Oxford Diffraction X-Calibur CCD diffractometer. We would like to thank Indian Institute of Chemical Biology, Kolkata, for helping us to perform the TEM experiments.

Supplementary material

10853_2011_5969_MOESM1_ESM.doc (10.3 mb)
Supplementary material 1 (DOC 10568 kb)


  1. 1.
    Reches M, Gazit E (2003) Science 300:625CrossRefGoogle Scholar
  2. 2.
    Reches M, Gazit E (2004) Nano Lett 4:581CrossRefGoogle Scholar
  3. 3.
    Song Y, Challa SR, Medforth CJ, Qiu Y, Watt RK, Peña D, Miller JE, van Swol F, Shelnutt JA (2004) Chem Commun 120:1044CrossRefGoogle Scholar
  4. 4.
    Gupta M, Bagaria A, Mishra A, Mathur P, Basu A, Ramakumar S, Chauhan VS (2007) Adv Mater 19:858CrossRefGoogle Scholar
  5. 5.
    Yan X, He Q, Wang K, Duan L, Cui Y, Li J (2007) Angew Chem Int Ed 46:2431CrossRefGoogle Scholar
  6. 6.
    Zhang X, Zhang X, Zou K, Lee CS, Lee ST (2007) J Am Chem Soc 129:3527CrossRefGoogle Scholar
  7. 7.
    Zhang X, Zhang X, Shi W, Meng X, Lee CS, Lee ST (2007) Angew Chem Int Ed 46:1525CrossRefGoogle Scholar
  8. 8.
    Fairman R, Àkerfeldt KS (2005) Curr Opin Struct Biol 15:453CrossRefGoogle Scholar
  9. 9.
    Vriezema DM, Hoogboom J, Velonia K, Takazawa K, Chirstianen PCM, Maan JC, Rowan AE, Nolte RJM (2003) Angew Chem Int Ed 42:772CrossRefGoogle Scholar
  10. 10.
    Diaz N, Simon F-X, Rawiso M, Decher G, Jestin J, Mésini P (2005) Angew Chem Int Ed 44:3260CrossRefGoogle Scholar
  11. 11.
    Zhang S, Holmes T, Lockshin C, Rich A (1993) Proc Natl Acad Sci USA 90:3334CrossRefGoogle Scholar
  12. 12.
    Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Biomaterials 16:1385CrossRefGoogle Scholar
  13. 13.
    Holmes TC, de Lacalle S, Liu G, Rich A, Zhang S (2000) Proc Natl Acad Sci USA 97:6728CrossRefGoogle Scholar
  14. 14.
    Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky A (2002) J Proc Natl Acad Sci USA 99:9996CrossRefGoogle Scholar
  15. 15.
    Marini DM, Hwang W, Lauffenburger DA, Zhang S, Kamm RD (2002) Nano Lett 2:295CrossRefGoogle Scholar
  16. 16.
    Leon EJ, Verma N, Zhang S, Lauffenburger DA, Kamm RD (1998) J Biomater Sci Polymer Ed 9:297CrossRefGoogle Scholar
  17. 17.
    Caplan M, Moore P, Zhang S, Kamm R, Lauffenburger D (2000) Biomacromolecules 1:627CrossRefGoogle Scholar
  18. 18.
    Santoso SS, Vauthey S, Zhang S (2002) Curr Opin Colloid Interface Sci 7:262CrossRefGoogle Scholar
  19. 19.
    Vauthey S, Santoso S, Gong H, Watson N, Zhang S (2002) Proc Natl Acad Sci USA 99:5355CrossRefGoogle Scholar
  20. 20.
    Santoso S, Hwang W, Hartman H, Zhang S (2002) Nano Lett 2:687CrossRefGoogle Scholar
  21. 21.
    Jayakumar R, Murugesan M, Rafiuddin Ahmed M (2000) Bioorg Med Chem Lett 10:1547CrossRefGoogle Scholar
  22. 22.
    Israelachvili JN, Mitchell DJ, Ninham BW (1977) Biochim Biophys Acta 470:185CrossRefGoogle Scholar
  23. 23.
    Lasic DD, Papahadjopoulos D (1996) Medical Applications of Liposomes. Elsevier Science, AmsterdamGoogle Scholar
  24. 24.
    Hartgerink JD, Beniash E, Stupp SI (2002) Proc Natl Acad Sci USA 99:5133CrossRefGoogle Scholar
  25. 25.
    Hench LL, Wilson J (1984) Science 226:630CrossRefGoogle Scholar
  26. 26.
    Hench LL, Polak JM (2002) Science 295:1016CrossRefGoogle Scholar
  27. 27.
    Kim VA, Mooney DJ (1998) Trends Biotechnol 16:224CrossRefGoogle Scholar
  28. 28.
    Weiner S, Traub W (1986) FEBS Lett 206:262CrossRefGoogle Scholar
  29. 29.
    Wiener S, Addadi LJ (1997) Mater Chem 7:689CrossRefGoogle Scholar
  30. 30.
    Hartgerink JD, Beniash E, Stupp SI (2001) Science 294:1684CrossRefGoogle Scholar
  31. 31.
    Pierschbacher MD, Ruoslahti EJ (1987) Biol Chem 262:17294Google Scholar
  32. 32.
    Cai W, Wang G-T, Xu Y-X, Jiang X-K, Li Z-T (2008) J Am Chem Soc 130:6936CrossRefGoogle Scholar
  33. 33.
    You L-Y, Jiang X-K, Li Z-T (2009) Tetrahedron 65:9494CrossRefGoogle Scholar
  34. 34.
    Wang C, Yin S, Chen S, Xu H, Wang Z, Zhang X (2008) Angew Chem Int Ed 47:9049CrossRefGoogle Scholar
  35. 35.
    Ajayaghosh A, Chithra P, Varghese R (2007) Angew Chem Int Ed 46:230CrossRefGoogle Scholar
  36. 36.
    Yan X, Cui Y, He Q, Wang K, Li J, Mu W, Wang B, Ou-yang Z-C (2008) Chem Eur J 14:5974CrossRefGoogle Scholar
  37. 37.
    Kim B-S, Hong D-J, Bae J, Lee M (2005) J Am Chem Soc 127:16333CrossRefGoogle Scholar
  38. 38.
    Gazit E (2002) FASEB J 16:77CrossRefGoogle Scholar
  39. 39.
    Ghosh S, Singh SK, Verma S (2007) Chem Commun 22:2296CrossRefGoogle Scholar
  40. 40.
    Ghosh S, Singh P, Verma S (2008) Tetrahedron 64:1250CrossRefGoogle Scholar
  41. 41.
    Joshi KB, Verma S (2008) Angew Chem Int Ed 47:2860CrossRefGoogle Scholar
  42. 42.
    Hunter CA, Lawson KR, Perkins J, Urch CJ (2001) J Chem Soc Perkin Trans 2:651Google Scholar
  43. 43.
    Gallivan JP, Dougherty DA (1999) Proc Natl Acad Sci USA 96:9459CrossRefGoogle Scholar
  44. 44.
    Antonietti M, Förster S (2003) Adv Mater 15:1323CrossRefGoogle Scholar
  45. 45.
    Förster S, Schmidt M (1995) Adv. Polym Sci 120:51Google Scholar
  46. 46.
    Mishra A, Panda JJ, Basu A, Chauhan VS (2008) Langmuir 24:4571CrossRefGoogle Scholar
  47. 47.
    Förster S, Abetz V, Muller HE (2004) Advances in Polymer Science. Springer, BerlinGoogle Scholar
  48. 48.
    Jenekhe SA, Chen XL (1999) Science 283:372CrossRefGoogle Scholar
  49. 49.
    Jenekhe SA, Chen XL (1998) Science 279:1903CrossRefGoogle Scholar
  50. 50.
    Holder SJ, Hiorns RC, Sommerdijk N, Williams SJ, Jones RG, Nolte RJM (1998) Chem Commun 14:1445CrossRefGoogle Scholar
  51. 51.
    Bowerman CJ, Ryan DM, Nissan DA, Nilsson BL (2009) Mol Biosyst 5:1058CrossRefGoogle Scholar
  52. 52.
    Kim W, Hecht MH (2006) PNAS 103:15824CrossRefGoogle Scholar
  53. 53.
    Bodanszky M, Bodanszky A (1984) The Practice of Peptide Synthesis. Springer, New YorkGoogle Scholar
  54. 54.
    Banerjee A, Balaram P (1997) Curr Sci 73:1067Google Scholar
  55. 55.
    Dutt A, Drew MGB, Pramanik A (2005) Org Biomol Chem 3:2250CrossRefGoogle Scholar
  56. 56.
    Pandit P, Chatterjee N, Halder S, Hota SK, Patra A, Maiti DK (2009) J Org Chem 74:2581CrossRefGoogle Scholar
  57. 57.
    Lee JK, Lentz BR (1997) Biochemistry 36:6251CrossRefGoogle Scholar
  58. 58.
    Ghosh S, Reches M, Gazit E, Verma S (2007) Angew Chem Int Ed 46:2002CrossRefGoogle Scholar
  59. 59.
    Mukherjee P, Drew MGB, Ghosh A (2009) Inorg Chem 48:2364CrossRefGoogle Scholar
  60. 60.
    Bose PP, Das AK, Hegde RP, Shamala N, Banerjee A (2007) Chem Mater 19:6150CrossRefGoogle Scholar
  61. 61.
    Panda JJ, Kaul A, Alam S, Babbar AK, Mishra AK, Chauhan VS (2011) Ther Deliv 2:193CrossRefGoogle Scholar
  62. 62.
    Lu Y, Zhao X (2011) Int J Pept Res Ther 17:81CrossRefGoogle Scholar
  63. 63.
    Koley P, Pramanik A (2011) Adv Funct Mater. doi:  10.1002/adfm.201101465
  64. 64.
    Kar S, Drew MGB, Pramanik A (2011) Prot Pept Lett 18:886CrossRefGoogle Scholar
  65. 65.
    Klyachko VA, Jackson B (2002) Nature 418:89CrossRefGoogle Scholar
  66. 66.
    Braell WA (1987) Proc Natl Acad Sci USA 84:1137CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sudeshna Kar
    • 1
  • Michael G. B. Drew
    • 2
  • Animesh Pramanik
    • 1
  1. 1.Department of ChemistryUniversity of CalcuttaKolkataIndia
  2. 2.School of ChemistryThe University of ReadingReadingUK

Personalised recommendations