Journal of Materials Science

, Volume 47, Issue 3, pp 1135–1141

Nanoparticles of IrO2 or Sb–SnO2 increase the performance of iridium oxide DSA electrodes

Materials in New Zealand

Abstract

Dimensionally stable anodes (DSAs) are widely used in electrochemical industries as gas evolution electrodes. In order to decrease the power consumption during gas evolution, the performance of the electrodes must be increased. In this study, IrO2- or Sb-doped SnO2 (ATO) nanoparticles were added to IrO2 DSAs at a level of 5–40%. The anode surfaces were characterised with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The performance of the anodes for the oxygen evolution reaction was measured in 0.5 mol L−1 H2SO4 solution potentiostatically. The performance increased for both the IrO2 and the ATO nanoparticles’ addition. The maximum performance with IrO2 nanoparticles occurs when the electrode contains 40 wt% nanoparticles, with more than double the current density at 1.25 V, and for ATO, the maximum occurs at 10% nanoparticles with a 70% increase in current density. These both correspond to the maxima in electrochemically active surface area as determined by cyclic voltammetry. The improvement in performance appears therefore to be primarily caused by the increase in surface area. Addition of catalytically active nanoparticles is shown to be an effective method to increase DSA electrode performance towards the oxygen evolution reaction.

References

  1. 1.
    Trasatti S (1984) Electrochim Acta 29:1503CrossRefGoogle Scholar
  2. 2.
    Da Silva L, Alves V, Da Silva M, Trasatti S, Boodts J (1997) Electrochim Acta 42:271CrossRefGoogle Scholar
  3. 3.
    De Pauli C, Trasatti S (1995) J Electroanal Chem 396:161CrossRefGoogle Scholar
  4. 4.
    Otogawa R, Morimitsu M, Matsunaga M (1998) Electrochim Acta 44:1509CrossRefGoogle Scholar
  5. 5.
    Shrivastava P, Moats M (2009) J Appl Electrochem 39:107CrossRefGoogle Scholar
  6. 6.
    Ardizzone S, Carugati A, Trasatti S (1981) J Electroanal Chem 126:287CrossRefGoogle Scholar
  7. 7.
    Coteiro RD, Teruel FS, Ribeiro J, de Andrade AR (2006) J Brazil Chem Soc 17:771CrossRefGoogle Scholar
  8. 8.
    Camara O, Trasatti S (1996) Electrochim Acta 41:419CrossRefGoogle Scholar
  9. 9.
    Guerrini E, Trasatti S (2006) Russ J Electrochem 42:1017CrossRefGoogle Scholar
  10. 10.
    Ribeiro J, Alves P, de Andrade A (2007) J Mater Sci 42:9293. doi:10.1007/s10853-007-1906-1 CrossRefGoogle Scholar
  11. 11.
    Takasu Y, Murakami Y (2000) Electrochim Acta 45:4135CrossRefGoogle Scholar
  12. 12.
    Iwakura C, Furukawa N, Tanaka M (1992) Electrochim Acta 37:757CrossRefGoogle Scholar
  13. 13.
    Vázquez-Gómez L, Cattarin S, Guerriero P, Musiani M (2009) J Electroanal Chem 634:42CrossRefGoogle Scholar
  14. 14.
    Amadelli R, Samiolo L, Velichenko AB, Knysh VA, Luk’yanenko TV, Danilov FI (2009) Electrochim Acta 54:5239CrossRefGoogle Scholar
  15. 15.
    Musiani M, Furlanetto F, Bertoncello R (1999) J Electroanal Chem 465:160CrossRefGoogle Scholar
  16. 16.
    Xu H-B, Lu Y-H, Li C-H, Hu J-Z (2010) J Appl Electrochem 40:719CrossRefGoogle Scholar
  17. 17.
    Belova I, Varlamova T, Galyamov B, Roginskaya Y, Shifrina R, Pruchenko S, Kaplan G, Sevostyanov M (1988) Mater Chem Phys 20:39CrossRefGoogle Scholar
  18. 18.
    Cao MH, Hu CW, Peng G, Qi YJ, Wang EB (2003) J Am Chem Soc 125:4982CrossRefGoogle Scholar
  19. 19.
    Marshall AT, Haverkamp RG (2010) Electrochim Acta 55:1978CrossRefGoogle Scholar
  20. 20.
    Haverkamp RG, Marshall AT, Cowie BCC (2011) Surf Interface Anal 43:847. doi:10.1002/sia.3644
  21. 21.
    Lodi G, Battisiti AD, Bendetti A, Fagherazzi G, Kristof J (1988) J Electroanal Chem 256:441CrossRefGoogle Scholar
  22. 22.
    Benedetti A, Polizzi S, Riello P, Debattisti A, Maldotti A (1991) J Mater Chem 1:511CrossRefGoogle Scholar
  23. 23.
    Kawar RK, Chigare PS, Patil PS (2003) Appl Surf Sci 206:90CrossRefGoogle Scholar
  24. 24.
    Lodi G, Battisti AD, Bordin G, Asmundis CD, Benedetti A (1990) J Electroanal Chem 277:139CrossRefGoogle Scholar
  25. 25.
    Kristof J, Mihaly J, Daolio S, De Battisti A, Nanni L, Piccirillo C (1997) J Electroanal Chem 434:99CrossRefGoogle Scholar
  26. 26.
    Roginskaya Y, Morozova O (1995) Electrochim Acta 40:817CrossRefGoogle Scholar
  27. 27.
    Angelinetta C, Atanasoska L, Atanasoski R, Trasatti S (1986) J Electroanal Chem 214:535CrossRefGoogle Scholar
  28. 28.
    Burke L, Whelan D (1984) J Electroanal Chem 162:121CrossRefGoogle Scholar
  29. 29.
    Birss VI, Bock C, Elzanowska H (1997) Can J Chem 75:1687CrossRefGoogle Scholar
  30. 30.
    Petit M, Plichon V (1998) J Electroanal Chem 444:247CrossRefGoogle Scholar
  31. 31.
    El Sawy EN, Birss VI (2009) J Mater Chem 19:8244CrossRefGoogle Scholar
  32. 32.
    Aurian-Biajeni B, Kimball A, Robblee L, Kahanda G, Tomkiewicz C (1987) J Electrochem Soc 134:2637CrossRefGoogle Scholar
  33. 33.
    Savinell R, Zeller R, Adams J (1990) J Electrochem Soc 137:489CrossRefGoogle Scholar
  34. 34.
    Da Silva LM, De Faria LA, Boodts JFC (2001) Electrochim Acta 47:395CrossRefGoogle Scholar
  35. 35.
    Ardizzone S, Fregonara G, Trasatti S (1990) Electrochim Acta 35:263CrossRefGoogle Scholar
  36. 36.
    Lassali TAF, Boodts JFC, Bulhoes LOS (1999) Electrochim Acta 44:4203CrossRefGoogle Scholar
  37. 37.
    Ouattara L, Fierro S, Frey O, Koudelka M, Comninellis C (2009) J Appl Electrochem 39:1361CrossRefGoogle Scholar
  38. 38.
    de Oliveira-Sousa A, de Siliva M, Machado S, Avaca L, de Lima-Neto P (2000) Electrochim Acta 45:4467CrossRefGoogle Scholar
  39. 39.
    Mattos-Costa F, de Lima-Neto P, Machado S, Avaca L (1998) Electrochim Acta 44:1515CrossRefGoogle Scholar
  40. 40.
    Lyons MEG, Floquet S (2011) Phys Chem Chem Phys 13:5314CrossRefGoogle Scholar
  41. 41.
    Ardizzone S, Trasatti S (1996) Adv Colloid Interface Sci 64:173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical and Process EngineeringUniversity of CanterburyChristchurchNew Zealand
  2. 2.School of Engineering and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations